CP/M & CP/NET PROGRAMMER'S GUIDE

PN 12084

Copyright © 1984 by Research Machines Limited
Printed in Great Britain

All rights reserved. Copies of this publication may be made by customers
exclusively for their own use, but otherwise no part of it may be
reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language without the prior written
permission of

Research Machines Limited,
Post Office Box 75,
Oxford,

England 0X2 0BW

Telephone: Oxford (0865) 249866

The policy of Research Machines Limited is one of continuous development
and improvement of its products and services, and the right is therefore
reserved to revise this document, or to make changes in the computer
software it describes without notice. Research Machines Limited makes
every endeavour to ensure the accuracy of the contents of this document but
does not accept liability for the consequences of any error or omission.

Additional copies of this publication may be ordered from Research
Machines Limited at the address above. Please quote the title as given
above.

If you would like to comment on any of our products or services please use
the reply paid form provided at the end of this manual.

PREFACE

This publication is intended to help you write programs which run under the
control of either CP/M or CP/NET for the Research Machines 380Z, 480Z and
Network stations. Before reading it you should have read the relevant
manuals described below and you should be familiar with the equipment you
use.

480Z: 4802 Disc System Users Guide, PN 11900
380Z: 380Z-D Disc System Users Guide, PN 12163
Network stations: Network Release 2.1 Users Guide, PN 12262

You should also have read the following manual:
CP/M Operating System Version 2.2D Users Guide, PN 11901

The BDOS functions described in this manual are mostly applicable to Z80
assembly language programmers. However, some high level languages such as
BCPL will also allow you to exploit them and you should check the
appropriate language manual for details of this facility.

Wherever CP/M is used in this manual, it refers to the CP/M Operating
System. This, and CP/NET, are trademarks of Digital Research.

Parts of Chapters 2 and 4 of the current manual have been taken from
Digital Research publications with their permission. We thank them for
their cooperation.

Where the term Z80 is used in this manual, it refers to the Z80
microprocessor. This is a registered trademark of Zilog, Inc. Where the
terms FORTRAN (80) and M80 Assembler are used, they refer to products of
Microsoft.

Contents

CONTENTS

CHAPTER 1 INTRODUCTION 1.1
The structure of CP/M 1.1
The BIOS and BDOS 1.2
The CCP 1.2
The TPA 1.2
CP/M interfaces 1.2
Programming interfaces 1.2
The user interface to the CCP 1.3
Program development 1.4
Deciding where to put your programs
in memory 1.4
Producing program source 1.5
Assembling your programs 1.5
Loading and running your programs 1.6
Debugging your programs 1.7
CHAPTER 2 CP/M 2 BDOS FUNCTIONS 2.1

Introduction
Using simple BDOS functions
Input/output to simple devices
Miscellaneous routines
Using BDOS disc functions
Overview
File maintenance
Writing and reading files sequentially
Random file operations
Passing filenames to your programs

NNNNNMNNDNONN
.
=W ONNTWW =

using the keyboard 2.13
Directory operations 2.14
Disc and file protection 2.14
Miscellaneous disc operations 2.15
Transporting software from one machine
to another 2.16
Operating system functions 2.17
CHAPTER 3 DEBUGGING YOUR PROGRAMS 3.1

Patching programs using the Front Panel 3
Patching using the CP/M DDT utility 3.
Initiating DDT 3
Operating DDT 3

(1)

Contents

CHAPTER 4

CHAPTER 5

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

CP/NET BDOS FUNCTIONS

Introduction
How a station works

Modifying programs to run under CP/NET

Using the special facilities of CP/NET
Error handling under CP/NET
Device mapping across the network
Password protection under CP/NET

Temporary filename translation

CP/NET BDOS functions

MORE ADVANCED USE OF CP/M
Adding a device handler
Running CP/M in a different area of
memory
Connecting your device handler to CP/M
BIOS entry point subroutines
Disc parameter tables
Reserved locations in page zero
A SAMPLE FILE~TO-FILE COPY PROGRAM
A SAMPLE FILE DUMP UTILITY
A SAMPLE RANDOM ACCESS PROGRAM

USE OF MEMORY BY CP/M

(ii)

>
.
-

.
- 0D W

W N -

Ll ol R N N
.

Introduction

CHAPTER 1

INTRODUCTION

The first two sections of this chapter describe the structure of CP/M and
its interfaces. The last section describes the various phases of program
development. Where necessary, you are pointed to further reading on
particular topics.

An introduction the the Research Machines network and CP/NET is given in
Chapter 4.

THE STRUCTURE OF CP/M

This section describes CP/M (version 2) system organization, including the
structure of memory and system entry points. It provides the information
you need to write programs which operate under CP/M and which use the
peripheral and disc input/output (1/0) facilities of the system. The
interface between CP/M and the Research Machines monitors (COS and ROS) is
described in the following publication:
3802/480Z Firmware Reference Manual, PN 10971

CP/M is divided into four logical parts, or modules:

1 The Basic Input/Output System (BIOS)

2 The Basic Disc Operating System (BDOS)

3 The Console Command Processor (CCP)

4 The Transient Program Area (TPA)

Their position in memory is shown in Figure 1.1.

High
Memory FDOS (BDOS+BIOS)
FBASE:
cCcp
CBASE:
TPA
TBASE:
(100H)
System Paramaters
BOOT:
(0H)

Figure 1.1 Organization of CP/M

Introduction

The BIOS and BDOS

The BIOS defines the exact low level interface with a particular computer
system which is necessary for peripheral device I/0; it is specific to the
hardware of the computer concerned. The BDOS provides file structure and
access to system devices, for example the keyboard and screen. They are
both logically combined into a single module, with a common entry point,
and this is referred to as the FDOS (see Figure 1.1).

The CCP

The CCP acts as an interface between the computer and the person operating
its keyboard. It analyzes commands that you type on the keyboard (for
example, ERA) and calls upon the FDOS to carry out the operations
requested.

The TPA

The TPA is an area of memory where you can load and run your programs; it
is also used to hold, during their period of operation, various non-
resident operating system utilities (for example, PIP).

CP/M INTERFACES

Programming interfaces

Figure 1.2 shows you CP/M's interfaces.

“pPI.ICA'I'IONS

Normal method of
‘ communication
Sometimes used

‘ W Bunder special
circumstances

Figure 1.2 CP/M interfaces

At the highest level is the interface between your programs (application
programs) and the BDOS. Your programs can access this using BDOS functions
and this is the recommended method of programming under CP/M. Chapter 2 of
this manual tells you all about these functions and how to use them. 1In
addition, Chapter 4 tells you about the extra BDOS functions that are

Introduction

At the next level is the interface between your programs and the BIOS.
Again, you should not use this interface unless there is an alternative,
but for different reasons. Basically, your BDOS calls go through the BIOS;
if your programs access the BIOS directly they will go through the same
mechanism as the BDOS calls and might corrupt the data structures in the
BIOS.

At the lowest level, your programs can access the facilities of the
Firmware, using EMT instructions. These are similar to the "software
interrupts" or "emulator traps" of other computers and you should only use
them if you have no alternative; they require a lot of understanding, and
programs using EMT instructions will only run on Research Machines
computers. If you need to use EMTs they are described in the following
Research Machines publication:

380Z/480Z Firmware Reference Manual, PN 10971

The user interface to the CCP

You communicate with CP/M, via the CCP, by typing command lines such as DIR
and REN after each prompt. Each command line takes one of the forms:

command
command file1l
command filel file2

where "command" is either a built-in function, such as DIR or TYPE, or the
name of a transient command or program. Suppose the form:

command

is used. If the command is a built-in function of CP/M, it is executed
immediately. Otherwise, the CCP searches the currently addressed disc for
a file with the name:

command .COM

which contains a program. If it finds one, the program will be
loaded.

If you try to load a transient program from a .COM file and the file is
found, it is assumed to contain the memory image of a program that executes
in the TPA and thus starts at 100H (TBASE) in memory. The CCP loads the
COM file from the disc into memory starting at 100H and it can extend up to
CBASE.

If the command is followed by one or two file specifications, the CCP
prepares one or two file control block (FCB) names in the system parameter
area.

Introduction

The CCP passes control to the transient program and this begins execution.
The transient program is "called" from the CCP; thus, provided it preserves
the CCP stack, it can simply return to the CCP upon completion of its
processing, or it can jump to BOOT to pass control back to CP/M. In the
first case, the transient program must not use memory above CBASE, while in
the latter case, memory up to FBASE-1 can be used.

PROGRAM DEVELOPMENT

The various phases of program development are summarized below:

1 1Identifying and analyzing the problem

2 Designing your program

3 Deciding where to put your program in the computer's memory

4 Producing program source

5 Assembling your program (where necessary)

6 Loading and running your program

7 Debugging your program if it fails
The first two points will not be discussed here; they are worthy of a book
in themselves. Instead, the rest of this section describes points 3 to 7
in more detail, pointing you to further reading on particular topics, where

necessary.

Deciding where to put your programs in memory

Your programs must start at 100H and you can find out how much space you
have available using the memory pointer HIMEM (at locations 006H and 007H).
HIMEM contains the address shown in the diagram below; it is important to
note that this address is the first unavailable address of memory.

Top of memory-—____

Memory used by ROS/COS

CP/M BIOS

Address in HIMEM CP/M BDOS

User program

100H:

Introduction

The exact memory addresses of areas shown in Figure 1.1 vary from version
to version. All standard CP/M versions, however, assume that BOOT = 0000H,
the base of random access memory. The machine code found at location BOOT
performs a system "warm start"; this loads and initializes the variables
necessary to pass control to the CCP. Thus, transient programs need only
jump to location BOOT to return control to CP/M at the command level. 1In
the Research Machines version of CP/M, TBASE = 100H.

The principal entry point to the FDOS is at location 0005H, where a jump to
FBASE is found.

A summary of the memory used by CP/M is given in Appendix D. The memory
used by the ROS and COS Firmware is shown in detail in the following
publication:

3802/480Z Firmware Reference Manual, PN 10971
It has been necessary to reserve some memory for the COS or ROS Firmware and

its work area. As a result of this, the largest CP/M systems you can run
on a 380Z are as follows:

Type of installation Size of largest CP/M
system (includes CP/M)

32K 380Z system without HRG 31K

32K 3802 system with HRG 47K when HRG is not in use (includes
16K from graphics board)

64K 380Z or 480Z system 56K

Producing program source

When you use BASIC you produce your program source without the need for
additional text editors. With other languages such as ZASM, the text
editor TXED is available. This offers a wide range of functions and is
described in detail in the Research Machines publication

TXED Text Editor and Formatter for Disc Systems, PN 11042

Assembling your programs

The ZASM Assembler was written by Research Machines and its use is
recommended. It is described in the Research Machines publication:

ZASM Assembler for Disc and Network Systems, PN 11066

ZASM will assemble a source program to produce a file in industry standard

Introduction

ZASM will assemble a source program to produce a file in industry standard
Intel "hex" format, x.HEX. On Version 4.1J or later it can directly
produce .COM files and .REL files.

You can also use the Microsoft M80 Assembler which is provided as part of
the FORTRAN (80) package.

Loading and running your programs

The LOAD command reads a file (which is assumed to contain "HEX" format
machine code) and produces a memory image file that can subsequently be
executed. The file name is assumed to be of the form:

X.HEX

and only the primary filename X need be specified in the command. The
memory image file created is named:

X.COM

The file is actually loaded into memory and executed when you type the
filename X immediately after the prompt character ">" printed by the CCP.

Generally, the CCP reads the filename X following the prompting character
and looks for a built-in function name. If no function name is found, the
CCP searches the current default disc directory for a file with the name:

X.COM

If found, the machine code is loaded into the TPA, and the program
executes. Thus, you need only LOAD a hex file once; it can be subsequently
executed any number of times by typing the primary name. 1In this way you
can "invent" new commands in CP/M.

If you were to type:
LOAD B:BETA

the situation is slightly different. Here, the "HEX" file will be created
on the drive B, as requested, but if you want to load it into memory you
must type:

B:BETA

You should note that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ZASM program, for
example) and these must begin at 100H of the TPA. The addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hexadecimal records are read.
Thus, LOAD must be used only for creating CP/M standard "COM" files that
operate in the TPA. Programs which occupy regions of memory other than the
TPA are loaded under DDT.

Introduction

Most high-level languages (for example, FORTRAN) have compilers which
produce a relocatable (.REL) form of machine code; ZASM can also produce
this type of code. Several of these .REL files can be linked together
using a linkage editor to produce a .COM file.

Debugging your programs

The 480Z and 380Z both contain a powerful debugging tool - the Front Panel.
This contains a wide range of features to help you debug a machine code
program, plus some machine control commands. A detailed description of how
to use the Front Panel is given in the following manuals:

380%Z/480Z Machine Language Programming Guide, PN 11068
3802/4802 Firmware Reference Manual, PN 10971

Chapter 3 of the current manual describes how to patch your programs using
the Front Panel and also mentions some of the other debugging facilities
which are available.

CP/M2 BDOS Functions

CHAPTER 2

CP/M 2 BDOS FUNCTIONS

There are a number of standard operations which any program may want to
perform, for example, getting characters from the keyboard, outputting to
the screen and handling files. Operations like these are handled by the
operating system and you can access them using the BDOS function calls.
The early parts of this chapter describe how you can use these function
calls in your programs and the last part gives a detailed description of
each one.

INTRODUCTION

The complete range of BDOS function calls is shown in Table 2.1. Whenever
you want to use one of them you do so in a well-defined way: your
program must load the 280 set of registers with parameter values; it must
then make a machine code subroutine call to a specific address (0005H)
which contains a jump to the operating system. This is the only defined
entry point to the operating system.

In some cases, when the operating system has performed the operation you
want, it uses the ZB80 registers to pass information back to your program:
for example, data from the keyboard or a warning that the operation was not
successful.

Function Function Function Function
No. No.
0 System reset 20 Read sequential
1 Console input 21 Write sequential
2 Console output 22 Make file
3 Reader input 23 Rename file
4 Punch output 24 Return login vector
5 List output 25 Return current disc
6 Direct console 1/0 26 Set DMA address
7 Not supported 27 Get address (alloc)
8 Not supported 28 Write protect disc
9 Print string e 29 Get R/O vector
10 Read console buffer 30 Set file attributes
1 Get console status 31 Get address (disc parameters)
12 Return version number 32 Set/get user code
13 Reset disc system 33 Read random
14 Select disc 34 Write random
15 Open file 35 Compute file size
16 Close file 36 Set random record
17 Search for first entry 37 Reset drive
18 Search for next entry 38/39 Reserved
19 Delete file 40 Write random with zero fill

Table 2.1 BDOS functions

CP/M2 BDOS Functions

Before you do the call to the operating system you must load the 280
registers as follows:

1 A function code must be loaded into register C; this tells the
operating system which operation you want. If you want to output a
character to the screen (console), for example, you would use
function code 2 (the relevant function codes are shown in Table 2.1)

2 Any parameters which you want to transfer to the operating system
must be loaded into some of the other Z80 registers (typically D and
E). For example, if you wanted to print a character on the screen
you need to tell the operating system which character to print

Since CP/M makes extensive use of the zZ80 registers and does not save them
beforehand, you should save the registers which you are using in your
program by pushing them onto the stack and popping them on return from the
function call. The program counter and stack pointer are left in a clean
state by CP/M on exit.

Before we leave the subject of registers, two other points should be noted-

First of all, when you pass control to the BDOS function it will use
whatever information is in the registers. If you have not set these up
correctly it will still use the information they contain and the results
may be rather embarrassing for you! .

Secondly, the error handling information which CP/M passes back to you is
limited and this makes it difficult to write good, fault-tolerant software.
You should, therefore, make good use of any information passed back from
CP/M: 1In general, the value -1 in the A-register means that an operation
has failed, anything else usually means that it was successful. This is,
however, not always the case, and you should refer to the description of
the relevant function at the back of this chapter to be sure. If you want
to write fault-tolerant software to run under CP/M you must write it using
EMT instructions; these are described in the following Research Machines
publication:

3802/480Z Firmware Reference Manual, PN 10971

The BDOS function calls are designed for use with assembler language
programs. However, some high level languages allow you to have a procedure
which handles the passing of parameters to the BDOS. Even if the high
level language does not have this facility, it may allow you to insert
assembler language modules into your program and these could call BDOS
functions. To find out about these facilities, you should refer to the
relevant language manual (note, however, that you also need to know about
BDOS functions).

Basically, the BDOS function calls can be separated into two groups. The
first group handles input/output to the console, printer and other simple
devices; it also performs a number of system maintenance functions such as
resetting the system and identifying the system version number. These
functions are described below under the heading "Using simple BDOS functions".

CP/M2 BDOS Functions

The second group of BDOS functions allows you to access discs: to write
data to a disc, read from it, update it and look at the contents of the

directory, for example. This group is described below under the heading
"Using BDOS disc functions".

USING SIMPLE BDOS FUNCTIONS

Input/output to simple devices

Most programs need to accept data from the keyboard and write to the
screen. If you are writing in a high level language, the language will
contain routines which call the BDOS to do this for you. If you are writing
in assembler language you may want to use BDOS functions.

One of the first things you would need to do is output a message to the
console; you could do this using Function 2 (Console output). The
following piece of code shows how you could output one character, the
letter "A", to the console:

BDOS = 0005H
FN_CONSOLE OUT = 2
LD E,'A’
LD C,FN_CONSOLE OUT
CALL BDOS

The character you want to transfer must be loaded into the E register and
the function code must be loaded into the C register. Notice how the
value "FN_CONSOLE OUT" is used to load the C register and not the value
"2", This makes the code more meaningful and easier to maintain.

The type of code shown above will be used in the examples in this chapter
as it is easy to follow. However, if you are using ZASM version 4.1J or a
later version, the following equivalent code is an example of better
programming practice and is easier to support. It also highlights the fact
that a call to the BDOS has been made.

CP/M2 BDOS Functions

BDOSE = 0005H
FN_CONSOLE OUT = 2
MACRO BDOS, P1
*L OFF
b c,P1
CALL BDOSE
*L ON
ENDM

LD E,'A'
BDOS FN_CONSOLE_OUT

If you want to output a string of characters to the console, Function 9,
(Print string) would be more useful than Function 2. This will print a
string of text which is terminated by a "$" character. The following piece
of code shows how it is used:

BDOS = 0005H

FN PRINT STRING = 9

END_OF STRING = '$

MESSAGE DEFM 'This is a simple message'

DEFB END_OF STRING

LD DE,MESSAGE
LD C,FN_PRINT STRING
CALL BDOS

Here, the address of the message must be loaded into the DE registers
before the call. The value "$" could have been put on the line following
the string instead of "END_OF STRING". Again, it is done this way for ease
of maintenance; if the terminator character were to change, the program
modifications would be minimized.

One problem with this function is its inability to print dollar characters
($). If you need to do this you should use a different function (Function
2).

As well as being able to send information to the console you will need to
accept input from it; there are two aspects to this:

1 In some cases you will want to "echo" text input at the console to
the screen, in some cases you will not. An example of the last case
is the situation where a user types in a password; it is better not
to echo this to the screen in case someone is looking over his or
her shoulder!

CP/M2 BDOS Functions

2 In some cases you will want to suspend your program until text has
been input, in other cases you will want to test if a character has
been input but continue processing if it has not. You would
want to do this in any arcade-type games program, for example

The simplest method of reading data from the console is by using Function
1, (Console input). This waits until a key is pressed on the console and
then returns control to your program. On return from the call, the A
register contains a single character and the character is echoed to the
screen.

The following code shows how this function is called:

BOOT = 0

BDOS = 0005H

FN_CONSOLE IN = 1

NEXTC LD C,FN_CONSOLE_IN
CALL BDOS iReturn character in A
cp Ty 1End of processing?
JR NZ ,NEXTC iLoop if not
JP BOOT ;Reload CP/M

END

Here, the program will read all characters input until the character "*" is
typed. It would be useful if you just wanted to read one character from
the keyboard but if you wanted to read a number of characters you would
find Function 10 (Read console buffer) more useful. The following code
shows this in use:

BDOS = 0005H

FN_READ CONSOLE BUFFER = 10
BUFFER_LENGTH = 255

BUFFER DEFB BUFFER_LENGTH

DEFS BUFFER LENGTH+1

LD DE,BUFFER
LD C,FN_READ_CONSOLE BUFFER
CALL BDOS

Any text input will be stored from BUFFER+2 onwards and the number of

characters input will be stored in BUFFER+1 (this is shown in the diagram
below).

Lee[z2[TIh]i[s] [i]s[Ta] [t1]i[n]e] Jo[f] Jtlefx]t]

CP/M2 BDOS Functions

You must specify the length of the buffer (1 to 255 characters) and this
function reads all characters input until you press the RETURN key or until
the buffer is full. If you type more characters than the length of the
buffer allows, the excess characters will not be read and BDOS will return
control to your program with an incomplete line. Also, if you do not
reserve storage for the buffer, CP/M will overwrite your program; so be
warned!

A particular advantage of the "Read console buffer" function is its simple
editing facilities: these allow you to delete characters and backspace one
character, for example. The full range of facilities is described in the
last section of this chapter.

The console input functions described above are fine if you are prepared to
suspend your program until the relevant character(s) are typed. However,
in an arcade-type games program this is of no use. In such a situation,
Function 11 (Get console status) will be of help. This checks to see if a
character has been typed at the console. If it has, the value OFFH is
returned in register A; if it has not, a zero value is returned. Once you
know that a character has been typed, you can use either Function 1 or
Function 10 to get it.

Another disadvantage of the console input functions described above is the
fact that they recognize <CTRL/C> and other operating system functions.
Thus, if you inadvertently type <CTRL/C> you will re-boot the operating
system. You can get round this problem by using Function 6 (Direct console
I/0); this does not recognize operating system functions and it can be
used for input or output. In addition, you can replace the two operations:

Get console status
Console input
with one call to Function 6.

A disadvantage of Function 6 is the fact that you cannot output graphics
characters or "-1" with it.

The functions described above handle input/output to the console. Output
to the printer is handled by Function 5 (List output) and this is very
similar to Function 2 (Console output).

CP/M has two additional functions for simple devices:
Reader input
Punch output

These functions stem from the days when slow devices such as paper tape
readers and punches were the only method of data input other than via the
console. On the 480Z and 3802, the reader is mapped to the SIO-4 port and
the punch is mapped to a null device. You can interface your own devices
to the reader and punch "slots", if you wish; the procedure is defined in
Chapter 5.)

CP/M2 BDOS Functions

Miscellaneous routines

There are a number of useful functions which do not relate to simple device
handling or disc handling; they include Function 12 (Return version
number) and Function 0 (System reset).

"Return version number” will tell you the version of CP/M under which your
program is running; its use is recommended. If you do not use it and you
are running under a version of CP/M earlier than 2.2, for instance, the use
of some CP/M 2.2 facilities such as function 6, "Direct console /0%, will
make your program crash. If you do use Function 12, you could either
bypass the code which uses these facilities or stop the program running.
Note, however, that CP/M 1.4 does not support "Return version number”.

"Return version number" should always be used when writing programs to run
under CP/NET; the BDOS functions described in Chapter 4 will only work
under CP/NET.

Function 0, (System reset) reloads the BDOS and CCP part of CP/M but does
not corrupt the TPA. It has the same effect as a jump to location BOOT and
is the recommended way of exiting from your program.

USING BDOS DISC FUNCTIONS

Overview

Disc storage is one of the most significant features of CP/M and disc
handling comprises the larger part of the BDOS functions.

Disc storage is similar, in some respects, to filing cabinet storage. The
disc takes the place of a filing cabinet and inside it there are a number
of "slots", or files, which can hold data. The filing cabinet has an
"jndex" and the disc has the same, in the form of a "directory".

A file in CP/M can be thought of as a sequence of up to 65536 "records" of
128 bytes each, numbered from 0 through 65535; this allows a maximum of 8
megabytes per file. Note that if you want to write data in elements, or
"sub-records", of less than 128 bytes, you must pad your data out to form
complete records of 128 bytes yourself; CP/M will not do this for you,
although some high level languages may-

Files are set up by a well-defined procedure. In practice, you would first
“create" the file and then put data into it in the form of "records",
written sequentially. The "create" or "make file" operation sets up an
entry for the file in the disc's directory.

Finally, you would "close" the file; this operation updates the disc
directory to describe the file. You must close the file, otherwise the
results of your write operations will not be recorded in the directory and
you will not be able to read them again. In addition, when using double
density discs, disc transfers are buffered in the IDC and may not be
written away until the file is closed.

CP/M2 BDOS Functions

Now that you have written a file you will, of course, want to read it back!
The simplest way of doing this is to read it back in the order in which it
was written, that is, sequentially.

To do this, you must first open the file to extract a description of its
position from the directory. Next, you should read the file a record at a
time. When you have finished manipulating the information in the file you
should finally close it.

If you want to read or update records of your file in random order, the
open and close operations are similar but in between you use read random
and write random operations. Note that this is the only time you should
use the write random operation; files should not be created using this
operation. CP/M will cope with a file created in this way but the CP/M
utilities may produce unexpected results.

You might think that you do not need to close a file which you are merely
reading. In CP/M this is a valid assumption, but leaving a file open is
not good programming practice; it is untidy. Apart from this, if your
programs are ever likely to be run under CP/NET they are unlikely to work
properly unless you close all files, even read-only files.

There are a number of other disc operations which you might want to
perform, for example, renaming a file, deleting a file or searching the
directory to find out if a file exists. These are described in more detail
later.

File maintenance

Under CP/M a file can contain any number of records up to the full capacity
of the drive; each drive is logically distinct, with a disc directory and
file data area. The disc file names are in three parts: the drive select
code; the filename and the filetype.

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (ODH followed by OAH). Thus, one 128-byte CP/M record could
contain several lines of source text.

In a text file, <CTRL/Z> is used to pad the last record. The occurrence of
<CTRL/Z> in text files denotes the end of file to most utilities; your
program should deal with it as required.

Binary files (for example .COM files) contain an integral number of 128-
byte records. <CTRL/Z> characters embedded within them are not recognized
as end-of-file characters; the end-of-file condition returned by CP/M is
used to indicate that the last record has been read.

In general, files in CP/M can be thought of as a sequence of records of 128
bytes each. However, you should note that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disc data area. Internally, all files are divided into 16K byte
segments called logical extents. The division into extents is discussed in
subsequent paragraphs; however, they are not particularly significant for

CP/M2 BDOS Functions

the programmer since each extent is automatically located by CP/M in both
sequential and random access modes.

CP/M uses two memory blocks to pass data and information back and forth
between your program and the disc. The first block is a 128 byte

disc data buffer; you put any data to be written to the disc into this and,
when you read from the disc, the data buffer will hold the result. A
default location is provided for the data buffer at location 0080H. The
start address of this buffer is known as the Direct Memory Access (DMA)
address and you can alter it by using Function 26.

The second block is the File Control Block (FCB) and you use this to pass
control information across to the BDOS. The format of the FCB is shown in
Figure 2.1 and details are given in Table 2.2.

You must set up the FCB yourself and pass its address to the operating
system in the DE register. The FCB consists of a sequence of 33 bytes for
sequential access and 36 bytes for random access. It is a good idea to
always reserve 36 bytes for each FCB, whatever its type; for random access
operations, CP/M will use 36 bytes even if you have allocated 33! If you
wish, you can use the default FCB at location 005CH.

Each file being accessed through CP/M must have a corresponding FCB which
provides the name and allocation information for all subsequent file
operations. When opening or creating files, it is your responsibility to
£ill the lower 13 bytes of the FCB and initialize some of the other fields.
Normally, bytes 1 to 11 (fields 2 and 3) are set to the ASCII character
values for the file name and file type, while all other fields are zero.
You must not alter the FCB contents after the open or create function; if
you do so the system may crash.

Once a file has been created, the information in its FCB is stored in a
directory area of the disc. When you subsequently open the file, this
information is brought into central memory before you proceed with file
operations. The FCB is updated as file operations take place and the
information is recorded permanently on disc at the termination of the file
operation (see the CLOSE function).

Writing and reading files sequentially

Now that the FCB and disc data buffer have been described we will look at
how they are used in disc operations. We will start with the simplest form
of operation: writing a sequential file.

You access the BDOS disc function calls in a similar way to the simple BDOS
functions: register C holds the function code and parameters are passed
using the other registers. When you use Function 22 (Make file) to create
your sequential file, you load the first 12 bytes of the FCB with the drive
number, the filename and the file type, and store zeros in the rest of the
FCB. You then pass the address of the FCB to the operating system using
register pair DE and CP/M attempts to store the information in the FCB in
the directory.

CP/M2 BDOS Functions

FIELD
1 3 /a/s/e/7 8 / 10
L Io{alT{A[F[1[L[1]p]a[T]o]-[-|- Of-—-
The structure of an FCB
Field | Bytes Description

1 0 Drive code (0-16)
0 means use default drive for file
1 means drive A,
2 means drive B,
16 means use drive P.

2 1-8 Contain the file name in ASCII upper case with
high bit = 0

3 9-11 Contain the file type in ASCII upper case, with
high bit = 0

4 12 Contains the current extent number, normally set
to 00 by you, but in range 0-31 during file I1/0

5 13 Reserved for internal system use

6 14 Reserved for internal system use, set to zero on
call to OPEN, MAKE, SEARCH

7 15 Record count for the extent in field 4; takes on
values from 0-127

8 16-31 Filled-in by CP/M, reserved for system use

9 32 Current record to read or write in a sequential
file operation, initially set to zero by you

10 33-35 Optional random record number in the range 0~
65535, with overflow to byte 35. Bytes 33 and 34
constitute a 16~bit value with low byte in byte
33 and high byte in byte 34

Table 2.2 The format of an FCB

CP/M2 BDOS Functions

If CP/M was able to create an entry in the directory for your file, it will
return the value 0, 1, 2 or 3 in the A register; otherwise, it will return
the value -1. The following piece of code shows how you could check this
information:

BDOS = 0005H
FN_MAKE FILE = 22
FCB:

LD C,FN_MAKE FILE
LD DE,FCB

CALL BDOS

INC A

JpP Z,FAIL

FAIL: .

The next operation you would want to perform is to write blocks
sequentially to your file. To do this, you must first decide upon the
address of your disc data buffer. You could use the default data buffer at
address 0080H; however, if you want to write several blocks to the disc,
it would be better to organize them sequentially in memory; you can then
alter the data buffer address to the beginning of each block of memory
before each write operation. You do this using Function 26 (Set DMA
address) and the entire operation is shown in the diagram below:

Load data into ”

large buffer

-

Set DMA address

Write data Large buffer

Set DMA address

Write data

Set DMA address

Once you have set the DMA address, you can do your write operation using
Function 21 (Write sequential). Again, you pass the address of the (same)
FCB to CP/M in register pair DE. You should be careful not to clear or
otherwise modify the FCB; if you do this, CP/M will lose its file
pointers.

CP/M2 BDOS Functions

The final operation you perform when writing your sequential file is to
close the file, using Function 16 (Close file). Again, you pass the
address of the FCB to CP/M using register pair DE. If the operation is
unsuccessful, register A will contain the value -1; if it is successful,
the register will contain a number from 0 to 3.

To read your file sequentially, you would first open the file using
Function 15 (Open file); this is similar in concept to Function 22 (Make
file). You would then set the DMA address using Function 26 and then read
the file a block at a time using Function 20 (Read sequential). Again, it
is most efficient to read the data in the manner shown above for the write
operation: first set the DMA address to the start of a large block of
memory, read a block and then alter the DMA address to the start of the
next area of memory.

If you want to append extra blocks to your file you can do this easily.
You would first open your file, then read up to the end of it and finally
write the new blocks using Function 21 (Write sequential).

Appendix A shows a file-to-file copy program which uses the sequential file
access functions.

Random file operations

The read random (Function 33) and write random (Function 34) file
operations need 36 byte FCBs; they use the last three bytes of the FCB as
a record pointer.

You call both of these functions in a similar way to the sequential read
and write operations, but first you must set the required record number.
This has the following format:

N . 4 N 4
— m—— g
Low byte High byte Overflow byte

If the transfer was successful, a zero value will be returned in register
A; if it was unsuccessful, an error code of value 1 to 6 will be returned.
The explanation of these error codes is given under the description of the
relevant function.

Once again, you are strongly recommended not to use Function 34 (Write
random) when creating your files.

2.12

CP/M 2 BDOS Functions

Passing filenames to your programs using the keyboard

When you load a program, you can pass the names of two files to it by
typing a command such as:

PROGNAME file1 file2
The file PROGNAME.COM is loaded into the TPA and the "command line tail"
(denoted by "file1" and "file2" above) is stored in the default DMA buffer
at location 80H. The first position contains the number of characters,
with the characters themselves following the character count. If, for
example, you type:

PROGNAME B:X.ZOT Y.ZAP

the area starting at location 80H will be initialized as follows:

+00| +01| +02| +03|+04|+05| +06 |+07|+08|+09 | +A |+B [+C |+D |+E
EH | ' "l B "' X" | L.V Z O "D] V| 'Y | . | "ZV| A |'P"

The characters are translated to upper case ASCII with uninitialized
memory following the last valid character. It is your responsibility to
extract the information from this buffer before any file operations are
performed. In particular, if you re-define the data buffer address using
Function 26 (Set DMA address), you should note that command line tails will
still be stored at location 80H onwards; they are not moved to your new
address.

As well as being stored from location 80H onwards, the command line tail is
also stored in the default FCB, though in a slightly different form. The
first part of the information (file1) is stored at address 005CH, in fields
2 and 3 of the default FCB, the second part is stored within field 8, at
address 006CH (see the diagram below). Notice that the dots and colons
have been removed from the command line tail, in this case. Before your
program can open these files, it must move the second part (file2) to
another area of memory, otherwise it will be overwritten and lost.

—OO05CH
FCB
FIELD/1 2 3 \A4 56/7 8 /9/ 10
FILE1

In the following example:
PROGNAME B:X.ZOT Y.ZAP
the file PROGNAME.COM is loaded into the TPA, and the default FCB at 005CH

is initialized to drive code 2, file name X, and file type ZOT (see the
diagram below).

CP/M2 BDOS Functions

Fevo/1 2 /3 a/5/6/7 8 9/10

2IXv vevevvw|Z0T YveovoevZ AP
\

OOS5CH {OOSCH

The second drive code takes the default value 0, which is placed at 006CH,
with the file name Y placed into location 006DH and file type ZAP located 8
bytes later at 0075H. All of the remaining fields through field 9 are set
to zero. You should note again that it is your responsibility to move
this second file name and file type to another area (usually a separate
file control block) before opening the file that begins at 005CH, because
the open operation will overwrite the second filename and filetype.

If no file names are specified in the original command, the fields
beginning at O005DH and 006DH contain blanks. In all cases, the CCP
translates lower case alphabetics to upper case so as to be consistent with
the CP/M file naming conventions.

Appendix B shows the listing of a file dump utility which allows you to
pass file names to it from the console.

Directory operations

You will be familiar with the CP/M console commands which allow you to
delete a file and rename a file. You can also perform these actions from
your programs using Function 19 (Delete file) and Function 23 (Rename
file). 1In fact, the console commands use these functions themselves.

In addition to the above commands, Function 17 (Search for first) and
Function 18 (Search for next) allow you to search the directory for the
existence of one or more files. You start with "Search for first" and put
the filename which you want in an FCB. You do not need to give the exact
filename: if you insert a "?" character at any point in the filename, CP/M
will ignore this character position and return the first file whose name
matches the rest of the characters in the FCB. This is known as a
"wildcard facility". CP/M reads into your data buffer the directory block
which contains the filename and also gives you a pointer to the directory
entry.

If you are using the wildcard facility to search for a number of filenames,
you can use Function 18 (Search for next) to get the next name which
matches the FCB entry. 1Its action is similar to that of Function 17.

Disc and file protection

You can protect the information on your discs in various ways:

1 By using the physical write-protect facilities. The method depends
upon the discs which you use; basically, it consists of either
covering or uncovering the write-protect notch

CP/M 2 BDOS Functions

2 By using a BDOS function to write-protect the entire disc
3 By using a BDOS function to write-protect a specific file

The physical write-protection facilities apply to all types of programs
which access discs, even those using firmware routines. They are described
fully in the Users Guide for your computer and you should refer to this for
detailed information.

To protect the entire disc using software, you can use Function 28 (Write
protect disc). This will temporarily protect the currently-selected disc
until one of the following events occurs:

1 A "cold" or "warm" start operation
2 A disc reset

3 BDOS Fuction 13 (Reset disc system) is called

If you want to find out which discs are protected in this way you can use
Function 29 (Get read/only vector). This returns a value in the HL
register pair and each bit of this value corresponds to the status of a
specific drive. Note that this method of protection is applicable only to
programs using CP/M functions; it can be circumvented using firmware EMT
calls.

File protection is indicated in the FCB by the status of the most-
significant bit in the first byte of the filetype (see Table 2.2). This
is called the "read-only file attribute"™ and if this bit is set, the file
will be protected against writing; if it is clear, the file will not be
protected. You set and clear the status bit using Function 30 (Set file
attributes). You should not change these attribute bits other than with
Function 30 (Set file attributes).

If you want to check to see if a file is protected, you should use Function
17 (Search for first). This will return the directory entry for the file
in the form of an FCB; you can then look at the status bit and find out if
the file is protected or not.

Miscellaneous disc operations

There are a number of disc operations which have not yet been covered and
these are summarized below. In these descriptions the following
conventions apply:

1 The currently-selected drive is the default drive for all file
operations

2 Logggd—in drives are all logical drives that have been accessed since
the last cold or warm start, disc reset or call to Function 13 (Reset
disc system)

CP/M2 BDOS Functions

Function 13 (Reset disc system) can be used to restore the drives which
have been write-protected (using Function 28) to a read/write state. You
can reset a specific drive using Function 37 (Reset drive).

Function 14 (Select disc) allows you to specify a disc as the default
disc for subsequent file operations. Its converse, Function 25 (Return
current disc) will tell you which is the current default drive.

Function 24 (Return current log-in vector) will tell you which drives are
currently logged-in. If you want to find out what space is available on
one of these discs you must first make the disc you want the current disc,
then you can use Function 27 (Get ADDR (Alloc)). An allocation vector is
maintained in memory for each on-line disc drive and this function can be
used to interpret the information in the vector to give you the amount of
remaining storage.

If you want to determine the size of a file you can do so using Function

35 (Compute file size). On return from the function, the random record
bytes in the FCB contain the record address of the record following the end
of the file. Thus, you could append data to the end of an existing file by
merely calling Function 35 and then performing a sequence of random writes
starting at the preset record address.

TRANSPORTING SOFTWARE FROM ONE MACHINE TO ANOTHER

There are two aspects to this subject: you might want to run software that
was implemented on another computer upon your 380Z or 480Z; you might also
want to write software on your 380Z or 4802 that is suitable for running on
other machines, ie portable software. In fact, both are related: the
points you look for when converting a program to run on the 380Z and 480%

are the same as the ones you should bear in mind when writing portable
software.

The first thing to check in programs from other machines is whether or not
they use memory in page zero; software that uses the C compiler often uses
this area. In particular, the RST addresses must not be used; they are
used by the firmware.

The next things which usually cause problems are screen attributes and
control sequences; these are usually machine-dependent. If you are
writing portable software it is best to put screen control sequences in a
table and address each (variable-length) sequence using a separate table of
pointers; this is then easy to change.

Other points that may give you problems when running programs from other
machines are listed below:

1 Special function keys may have been used

2 The way in which the source machine handles colour will probably not
match the way in which the 3802 or 480% handles it

3 The disc space on your 380%Z or 480% may not be sufficient for the
program

CP/M2 BDOS Functions

4 The program may make assumptions regarding the speed of the target
machine in matters concerning timing (especially in the case of
real-time programs)

5 The program may use a non-standard character set
6 There may be a need for special devices or special hardware

7 The memory of your 380Z or 4802 may not be large enough to hold the
program

8 The program may be designed for a printer with a special character
set

9 The use of machine-specific subroutines, for example, the use of
EMTs

When writing portable software, many of these details can be set up in the
form of a table and will thus be easier to change. You should also isolate
BDOS calls, indeed any input/output calls, to individual subroutines. This
gives an overhead but ensures that the program is more-suitable for
transfer to non-CP/M systems.

There is always a trade-off between portability and performance when
writing software. Sometimes it is more efficient to break the rules and
take advantage of the special features of a machine. However, you should

always remember that you might have to modify your program to make it run
on a different machine.

OPERATING SYSTEM FUNCTIONS

Function 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returns control to the CP/M operating system at
the CCP level. The CCP reinitializes the disc subsystem by selecting and
logging in disc drive A, then reselecting the default drive. This function
has exactly the same effect as a jump to location BOOT.

Function 1: Console Input

Entry Parameters:
Register C: O01H

Returned Value:
Register A: ASCII Character

The console input function reads the next console character into register
A. Graphic characters, along with carriage return, line feed, and back
space <CTRL/H> are echoed to the console. Tab characters <CTRL/I> move the
cursor to the next tab stop.

CP/M2 BDOS Functions

The FDOS does not return to the calling program until a character has been
entered, thus suspending execution if a character is not ready. Function
1, therefore, is not suitable for real-time use. Instead, you should use
Function 6 (Direct console I/0).

Function 2: Console Output

Entry Parameters:
Register C: O02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. As in
Function 1, tabs are expanded and checks are made for <CTRL/S> (CP/M
start/stop scroll).

Function 3: Reader Input

Entry Parameters:
Register C: O3H

Returned Value:
Register A: ASCII Character

The next character will be read from the logical read device into register
A. Control does not return until the character has been read.

The "Reader Input" function is a throw-back to the days when input was mainly
from paper tape. Currently, the reader device slot in CP/M is mapped to
the SIO-4 port.
You can, if you wish, hook in your own devices to the reader slot in CP/M;
to do this you will have to write your own device driver as described in
the Research Machines publication:
3802/4802 Firmware Reference Manual

Function 4: Punch Output

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The "Punch Output" function sends the character from register E to the
logical punch device.

This function is also a throw-back to the days of paper tape. If you try
to output to the punch device your data will be discarded, unless you have
written a device driver of your own to handle such transfers.

CP/M2 BDOS Functions

Function 5: List Output

Entry Parameters:
Register C: O05H
Register E: ASCII Character

The "List Output" function sends the ASCII character in register E to the
logical listing device.

Function 6: Direct Console I/O

Entry Parameters:
Register C: O06H
Register E: OFFH (input) or
char (output)

Returned Value:
Register A: char or status (no value)

Direct I/O is supported under CP/M for those specialized applications where
basic console input and output are required. Use of this function should,
in general, be avoided since it bypasses all of the normal CP/M control
character functions (such as <CTRL/S> and <CTRL/P>. However, programs
which perform direct I/O through the BIOS, under previous releases of CP/M,
should be changed to use direct I/O under BDOS so that they can be fully
supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF,
denoting a console input request, or an ASCII character. If the input
value is FF, function 6 returns A = 00 if no character is ready, otherwise
A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a
valid ASCII character which is sent to the console. The contents of the A
register are undefined.

Function 6 must not be used in conjunction with other console I/0
functions.

Function 9: Print String

Entry Parameters:
Register C: 09H
Registers DE: String Address

The "Print String” function sends to the console device the character string
which is stored in memory at the location given by DE. Charicters are
transferred until a $ is encountered in the string. Tabs are expanded as

in Function 2, and checks are made for start/stop scroll.

If you want to print text containing $ signs you should not use this
function; instead, you should use Function 2 (Console out).

2.19

CP/M2 BDOS Functions

Function 10: Read Console Buffer

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returhed Value:
Console Characters in Buffer

The "Read Buffer” function reads a line of edited console input into a
buffer addressed by register pair DE. Console input is terminated either
when the input buffer overflows or a carriage return or line feed is typed.
The input buffer takes the form:

DE:+0 +1 +2 +3 +4 +5 +6 +7 48 ... 426
125!‘ZIWIIILIKII|NISI€ I
A

Characters read from console

Number of characters read
(set by FDOS upon return)

Maximum number of characters
that buffer will hold. This
must be set by you to a
number between 1 and 255

If the number of characters that the buffer will hold is greater than the
number of characters read, uninitialized positions will follow the last
character, denoted by "??" in the above diagram. A number of control
functions are recognized during line editing:

2.20

CP/M2 BDOS Functions

Control Effect
Function
<RUB/DEL> Removes the last character and backspaces one

character position

<CTRL/C> Reboots when at the beginning of line
<CTRL/E> Causes physical end of line
<CTRL/H> Removes the last character and backspaces one

character position

<CTRL/J> Terminates input line
<LINE FEED>

<CTRL/M> Terminates input line

<RETURN>

<CTRL/P> Printer echo toggle

<CTRL/R> Retypes the current line on the next line showing
all the changes made

<CTRL/U> Removes current line

<CTRL/X> Same as CTRL/U.

You should also note that certain functions which return the carriage to
the leftmost position (for example, <CTRL/X>) do so only to the column
position where the prompt ended (in earlier releases, the carriage returned
to the extreme left margin). This convention makes operator data input and
line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C: OBH

Returned Value:
Register A: Console Status

The Console Status function checks to see if a character has been typed at
the console. If a character has been typed, the value OFFH is returned in
Register A, otherwise, a 00H value is returned.

CP/M2 BDOS Functions

Function 12: Return Version Number

Entry Parameters:
Register C: OCH

Returned Value:
Register pair HL: Version Number

Function 12 provides information which helps you write programs that are
transferable between CP/M versions. Using function 12, for example, you
can write application programs that provide both sequential and random
access functions.

A two-byte value is returned, with H = 00 designating the CP/M release (H =
01 for MP/M) and L = 00 for all releases previous to 2.0. CP/M 2.0 returns
a hexadecimal 20 in register L, with subsequent version 2 releases in the
hexadecimal range 21, 22, up to 2F.

Function 13: Reset Disc System

Entry Parameters:
Register C: ODH

One of the other disc functions (Function 28) allows you to protect a disc
against writing from within your programs. The "Reset disc system" function is
used to restore the file system, by program, to a reset state where all

discs are set to read/write. Only disc drive A is selected and the default

DMA address is reset to 0080H.

This function could be used, for example, by an application program which
requires a disc change without a system reboot.

Function 14: Select Disc

Entry Parameters:
Register C: OEH
Register E: Selected Disc

The Select Disc function designates the disc drive named in register E as
the default disc for subsequent file operations, with E = 0 for drive A, 1
for drive B, and so on through 15 (corresponding to drive P in a full 16
drive system). The drive is placed in an on-line status, and this
activates its directory until the next cold start, warm start, or disc
system reset operation. If the disc medium is changed whilst it is on-
line, the drive automatically goes to a read-only status in a standard CP/M
environment (see function 28). FCBs which specify drive code zero (dr =
00H) automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default drive
and directly reference A through P.

CP/M2 BDOS Functions

Function 15: Open File

Entry Parameters:

Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The "Open File" operation is used to open a file whose entry currently
exists in the disc directory for the currently active user number.

The FDOS scans the referenced disc directory for a match in positions 1
through 14 of the FCB referenced by DE. If you put an ASCII question mark
(3FH) in any character position in the filename, any directory character
will be accepted. Normally, no question marks should be included.

If a directory element is matched, the relevant directory information will
be copied into bytes 16 to 31 of the FCB, thus allowing access to the files
through subsequent read and write operations. You should note that an
existing file must not be accessed until a successful open operation is
completed.

Upon return, the open function returns a directory code (see below) with
the value 0 through 3 if the open was successful or OFFH (255 decimal) if
the file cannot be found. If guestion marks occur in the FCB, the first
matching FCB is activated.

Note that the current record pointer (byte 32) must be zeroced by your
program if the file is to be accessed sequentially from the first record.

The directory code is a value in the range 0 to 3 and it is returned in the
A register; it can be used to find the directory entry, in the current DMA
buffer, of your file. If you multiply the contents of the A register by 32
(ie shift the A register left by 5 bits) this will give you the start
address of the directory entry in the buffer.

Function 16: Close File

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the open file function.
Given that the FCB addressed by DE has been previously activated through an
open or make function (see functions 15 and 22), the close function
permanently records the new FCB in the referenced disc directory.

CP/M2 BDOS Functions

The FCB matching process for the close is identical to the open function.
The directory code returned for a successful close operation is 0, 1, 2, or
3, whilst FFH (255 decimal) is returned if the file name cannot be found in
the directory.

A file must be closed, even if only read operations have taken place; this
ensures software compatibility with CP/NET networks and Research Machines

network systems, in particular.

Function 17: Search for First

Entry Parameters:
Register C: 11H
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

"Search First" scans the directory for a match with the file given in the
FCB addressed by DE. This function has a wildcard facility: if you insert
a "?" character in any positions within the filename, filetype or extent
field, these positions will be ignored during the directory search on the
default or auto-selected disc drive. If the drive code field contains a
"?" character, the auto disc select function will be disabled and the
default disc will be searched. 1In this case, the search function will
return any matched entry, allocated or free, belonging to any user number.
This latter function is not normally used by application programs, but it
allows complete flexibility to scan all current directory values.

The value 255 (hexadecimal FF) is returned if the file is not found;
otherwise, a directory code in the range 0 to 3 is returned and indicates
that the file is present.

Function 18: Search for Next

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The "Search Next" function is similar to the "Search First" function,
except that the directory scan continues from the last matched entry.
Function 18 also returns the decimal value 255 in A when no more directory
items match.

You should not attempt any disc operations between calls to Functions 17
and 18.

CP/M2 BDOS Functions

Function 19: Delete File

Entry Parameters:
Register C: 13H
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

The "Delete File" function removes files that match the FCB addressed by
DE. The filename and type may contain wildcards (i.e., question marks in
various positions), but the drive select code cannot be ambiguous, as it
may be in the "Search First" and "Search Next" functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be
found; otherwise, a value in the range 0 to 3 is returned.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
make operation (Functions 15 and 22), the "Read Sequential” function reads
the next 128-byte block from the file into memory at the current DMA
address.

The record is read from a position in the extent given by byte 32 of the
FCB; this byte is then automatically incremented to the next record
position. If byte 32 overflows, the next logical extent is automatically
opened and byte 32 is reset to zero in preparation for the next read
operation.

The value 00H is returned in the A register if the read operation was
successful; a nonzero value is returned if no data exists at the next
record position (for example, if end-of-file occurs).

Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
make operation (Functions 15 and 22), the “"Write Sequential” function
writes the 128-byte data block to the file from the memory at the current
DMA address.

CP/M2 BDOS Functions

The block is placed at the position pointed to by byte 32 of the FCB, and
byte 32 is automatically incremented to point to the next block position-
If byte 32 overflows, the next logical extent is automatically opened and
byte 32 is reset to zero in preparation for the next write operation.

Write operations can take place into an existing file, in which case newly-
written records overlay those which already exist in the file.

Upon return from a successful write operation, Register A = 00H; a nonzero
value indicates an unsuccessful write caused by a full disc or hardware
errors.

Function 22: Make File

Entry Parameters:
Register C: 16H
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

The “"Make File" operation is similar to the "Open File" operation, except
that the FCB must name a file which does not exist in the currently
referenced disc directory (i.e., the one named explicitly by a nonzero
drive field, or the default disc, if the drive code is zero). The FDOS
creates the file and initializes both the directory and main memory value
to an empty file. The make function has the side effect of activating the
FCB; thus, a subsequent open is not necessary.

You must ensure that no duplicate file names occur; a preceding delete
operation is sufficient if there is any possibility of duplication.

Upon return, register A = 0, 1, 2, or 3, if the operation was successful,
and OFFH (255 decimal) if no more directory space is available.

Function 23: Rename File

Entry Parameters:
Register C: 17H
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences
of the file named in the first 16 bytes, to the file named in the second 16
bytes. The drive code at Byte 0 is used to select the drive, whilst the
drive code for the new filename (at position 16 of the FCB) is assumed to
be zero. Upon return, register A is set to a value between 0 and 3, if the
rename was successful, and OFFH (255 decimal) if the first file name could
not be found in the directory scan.

This function will not accept the wildcard character "?" in the FCB. You
must also ensure that no duplicate filenames occur.

CP/M2 BDOS Functions

Function 24: Return Log-in Vector

Entry Parameters:
Register C: 18H

Returned Value:
Register pair HL: Log-in Vector

The log~in vector value returned by CP/M is a 16-bit value in HL, where the
least significant bit of L corresponds to the first drive A and the high
order bit of H corresponds to the sixteenth drive, labeled P. A 0 bit
indicates that the drive is not on~line; a 1 bit marks a drive which is
actively on-line as a result of an explicit disc drive selection, or an
implicit drive selection caused by a file operation that specified a
nonzero drive field. You should note that compatibility is maintained with
earlier releases, since registers A and L contain the same values upon
return.

Function 25: Return Current Disc

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disc

Function 25 returns the currently selected default disc number in register
A. The disc¢ numbers range from 0 to15, corresponding to drives A to P.

Function 26: Set DMA Address

Entry Parameters:
Register C: 1AH
Register pair DE: DMA Address

DMA is an acronym for Direct Memory Access; this is often used in
connection with disc controllers which directly access the memory of the
computer to transfer data to and from the disc subsystem. Although many
computer systems use non-DMA access (i.e., the data is transferred through
programmed I/0O operations), the DMA address has, in CP/M, come to mean the
address at which the 128-byte data block resides in memory before a disc
write and after a disc read operation.

Upon cold start, warm start, or disc system reset, the DMA address is
automatically set to 0080H. The "Set DMA Address" function, can, however,
be used to change this default value to address another area of memory
where the data blocks reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent "Set DMA Address"
function, cold start, warm start, or disc system reset.

2.27

CP/M2 BDOS Functions

Function 27: Get ADDR(Alloc)

Entry Parameters:
Register C: 1BH

Returned Value:
Register pair HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disc
drive. Various system programs use the information which it provides to
determine the amount of remaining storage (see the STAT program). Function
27 returns the base address of this allocation vector for the currently
selected disc drive. However, the allocation information may be invalid if
the disc selected has been marked as read-only.

Function 28: Write Protect Disc

Entry Parameters:
Register C: 1CH

The "Write Protect Disc" function provides temporary write protection for
the currently selected disc. BAny attempt to write to the disc before the
next cold or warm start operation will produce the message:
BDOS ERR on d: R/O
To clear the write protection, you must do one of the following:
1 A cold or warm start
2 Call Function 13 (Reset disc system)

3 ball Function 37 (Reset drive)

Function 29: Get Read/Only Vector

Entry Parameters:
Register C: 1DH

Returned Value:
Register pair HL: R/0 Vector Value

Function 29 returns a bit vector in register pair HL; this indicates
drives which have the temporary read-only bit set. As in function 24, the
least significant bit corresponds to drive A, whilst the most significant
bit corresponds to drive P. The R/O bit is set either by an explicit call
to Function 28 or by the automatic software mechanisms within CP/M that
detect changed discs.

2.28

CP/M2 BDOS Functions

Function 30: Set File Attributes

Entry Parameters:
Register C: 1EH
Register pair DE: FCB Address

Returned Value:
Register A: Directory Code

The most significant bits in Bytes 1 to 11 of the FCB are referred to as
the "file attributes"; currently, only those of Bytes 9 and 10 are used.
The attributes of Bytes 1 to 4 can be used by application programs, since
they are not involved in the matching process during file open and close
operations. Those of Bytes 5 to 8 and Byte 11 are reserved for future
system expansion.

The "Set File Attributes™ function allows manipulation by program of these
attributes. In particular, the R/0 and System attributes (the most
significant bits in Bytes 9 and 10 of the FCB) can be set or reset.

When using this function, the DE pair should address an unambiguous file
name with the appropriate attributes set or reset. Function 30 searches
for a match and changes the matched directory entry to contain the selected
indicators.

Function 31: Get ADDR(Disc Parms)

Entry Parameters:
Register C: 1FH

Returned Value: :)
Register pair HL: DPB Address

‘The address of the BIOS-resident disc parameter block is returned in HL as
a result of this function call. This address can be used in either of two
ways. First, the disc parameter values can be extracted for display and
space computation purposes. Secondly, transient programs can dynamically
change the values of current disc parameters when the disc environment
changes, if required. Normally, application programs will not require this
facility.

Function 32: Set/Get User Code

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user
number by calling Function 32. If register E = OFFH, the value of the

CP/M2 BDOS Functions

current user number is returned in register A and is in the range 0 to 15.
If register E is not OFFH, the current user number is changed to the value
of E (modulo 16).

Function 33: Read Random

Entry Parameters:
Register C: 21H
Register pair DE: FCB Address

Returned Value:
Register A: Return Code

The "Read Random" function is similar to the sequential file read operation
of previous releases. However, the read operation takes place at a
particular record number, selected by a 24-bit value specified in the FCB.
This value is a 3-byte field starting at Byte 33 of the FCB. You should
note that the sequence of 24 bits is stored with least significant byte
first (byte 33), middle byte next (byte 34) and high byte last (byte 35).
CP/M does not reference byte 35, except in computing the size of a file
(function 35). Byte 35 must be zero, however, since a nonzero value
indicates overflow past the end of file.

Thus, Bytes 33 and 34 are treated as a double-byte, or "word" value which
contains the record to be read. This value ranges from 0 to 65535, thus
providing access to any particular record of the 8-megabyte file. To
process a file using random access, the base extent (extent 0) must first
be opened using Function 15. Although the base extent may or may not
contain any allocated data, this ensures that the file is properly recorded
in the directory and is visible in DIR requests. The selected record
number is then stored in the random record field (Bytes 33 and 34) and the
BDOS is called to read the record.

Upon return from the call, register A either contains an error code, as
listed below, or the value 00, indicating that the operation was
successful. In the latter case, the current DMA address contains the
randomly accessed record. You should note that, contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent random
read operations will continue to read the same record.

During each random read operation, the logical extent and current record
values are automatically set. Thus, the file can be sequentially read or
written, starting from the current randomly accessed position. However,
you should note that, in this case, the last randomly read record will be
reread as one switches from random mode to sequential read mode and the
last record will be rewritten as one switches to a sequential write
operation. You can, of course, simply advance the random record position
following each random read or write to obtain the effect of a sequential
I/0 operation.

Error codes returned in register A following a random read are listed
below.

CP/M2 BDOS Functions

Error Meanin
Code
01 Reading unwritten data
02 (not returned in read mode)
03 Cannot close current extent
04 Seek to unwritten extent
05 (not returned in read mode)
06 File size overflow (byte 35 of FCB too big)

Error codes 01 and 04 occur when a random read operation accesses a data
block which has not been previously written or an extent which has not been
created; these are eguivalent conditions. Error code 03 does not normally
occur under proper system operation; if it does, it can be cleared by
simply rereading extent zero as long as the disc is not physically write
protected. Error code 06 occurs whenever Byte 35 of the FCB is nonzero.
Normally, nonzero codes can be treated as missing data, with zero return
codes indicating completion of the operation.

Function 34: Write Random

Entry Parameters:
Register C: 22H
Register pair DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated in a similar way to the Read Random
call, except that data is written to the disc from the current DMA address.
Further, if the disc extent or data block which is the target of the write
has not yet been allocated, the allocation is performed before the write
operation continues.

As in the Read Random operation, the random record number is not changed as
a result of the write operation. The logical extent number and current
record positions of the file control block are set to correspond to the
random record that is being written. Again, sequential read or write
operations can begin following a random write, with the convention that the
currently addressed record is either re-read or rewritten again as the
sequential operation begims. You can also simply advance the random record
position following each write to get the effect of a sequential write
operation.

Note, in particular, that reading or writing the last record of an extent
in random mode does not cause an automatic extent switch as it does in
sequential mode.

CP/M2 BDOS Functions

The error codes returned by a random write are identical to those for the
random read operation, with two additions: error code 05 indicates that a
new extent cannot be created as a result of directory overflow; error code
02 indicates that the disc is full.

Function 35: Compute File Size

Entry Parameters:
Register C: 23H
Register pair DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in
random mode format (bytes 33, 34 and 35 are present). The FCB contains an
unambiguous file name which is used in the directory scan.

Upon return, the random record bytes contain the "virtual" file size, which
is, in effect, the record address of the record following the end of the
file. Following a call to function 35, if the high record byte (Byte 35)
is 01, the file contains the maximum record count 65536. Otherwise, bytes
33 and 34 constitute a 16-bit value which is the file size (Byte 33 is the
least significant byte, as before).

Data can be appended to the end of an existing file by simply calling
function 35 to set the random record position to the end of file, then
performing a sequence of random writes starting at the preset record
address.

The virtual size of a file corresponds to the physical size when the file
is written sequentially. If the file was created in random mode and
"holes" exist in the allocation, the file may in fact contain fewer records
than the size indicates. For example, if only the last record of an 8-
megabyte file is written in random mode (i.e., record number 65535), the
virtual size is 65536 records, although only one block of data is actually
allocated.

Function 36: Set Random Record

Entry Parameters:
Register C: 24H
Register pair DE: FCB Address

Returned Value:
Random Record Field Set

The "Set Random Record" function can be used to find out the position of a
specific block when reading or writing a file sequentially. It can be
useful in two ways:

First, it is often necessary to read and scan a sequential file to extract
the positions of various "key" fields. As each key is encountered,
Function 36 can be called to compute the random record position for the

CP/M2 BDOS Functions

data corresponding to this key. If the data unit size is 128 bytes, the
resulting record position is placed into a table, together with the key,
for later retrieval. After scanning the entire file and tabulating the
keys and their record numbers, you can then move instantly to a particular
keyed record by performing a random read, using the corresponding random
record number which was saved earlier. You can easily generalize the
scheme for variable record lengths, since the program need only store the
byte position relative to the start of the buffer, along with the key and
record number, to find the exact starting position of the keyed data at a
later time.

A second use of Function 36 is when switching from a sequential read or
write to random read or write. Here, the file is accessed sequentially to
a particular point, Function 36 is called to set the record number, and
subsequent random read and write operations continue from the selected
point in the file.

Function 37: Reset Drive

Entry Parameters:
Register C: 25H
Register pair DE: Drive Vector

Returned Value:
Register A: O0OH

The Reset Drive function allows you to reset specified drives. The
parameter passed is a 16 bit vector of drives to be reset; the least

significant bit is drive A:.

To maintain compatibility with MP/M, CP/M returns a zero value in register
A.

Function 40: Write Random With Zero Fill

Entry Parameters:
Register C: 28H
Register pair DE: FCB Address

Returned Value:
Register A: Return Code

The "Write Random With Zero Fill" operation is similar to Function 34, with
the exception that a previously unallocated block is filled with zeros
before the data is written.

Lo

| S

s

L

|

S

L

Debugging your programs

CHAPTER 3

DEBUGGING YOUR PROGRAMS

This chapter introduces you to some of the debugging facilities available
on the 480Z and 3802. The first section describes how to patch programs

using the Front Panel, the second one explains how to do this using the
CP/M DDT utility.

PATCHING PROGRAMS USING THE FRONT PANEL

The debugging features provided by the Front Panel include the display of
the contents of some of the Z80 registers, a set of commands for displaying
and altering the contents of memory and a command for stepping through a
program one instruction at a time. A full description of all these
features is given in the Firmware Reference Manual. A more detailed
description of how to use the Front Panel is given in the 3802/480Z Machine
Language Programmers Guide.

The current section describes how you can use the Front Panel for one of the
most common operations of the debugging process: patching a program.

When the keyboard is being polled for input, you can usually type CTRL F to
enter the Front Panel. An automatic entry to the Front Panel occurs
whenever the processor executes a break point instruction (code FF hex).

If you want to create a "personal version" of some standard item of
software, for example by altering the default value of some of the
parameters, then this can be done by "patching"” the program using the Front
Panel. As an example, to change the initial line length of the TXED
formatter option to 72, the procedure would be as follows:

Commands input Comments

1 TXED Load TXED

2 <CTRL/F> Enter front panel (type "Y" in response
to the prompt)

3 M The prompt ">" will be displayed

106 <RETURN>

4 I Point to formatter default value table
(first byte is initial line length)

5 48 <RETURN> 72 in hex

6 K Return to TXED

7 EX <ESC><ESC> Return to CP/M

8 SAVE n EDIT.COM <RETURN>

Debugging your programs

Please refer to the TXED Release Note for the exact value of n in step 8.

Further examples can often be found in the documentation for the program
concerned.

NOTES:

1 Before patching an item of software make sure you have a back-up
copy of the original program

2 When you have patched an item of software give it a NEW name so you
can distinguish it from the original program

3 In order to patch an item of software successfully, you will need
up-to-~date documentation for the program concerned

PATCHING USING THE CP/M DDT UTILITY

If you want to make substantial additions to an existing program then you
can use the CP/M DDT Utility Program to "patch" the program. The material
below describes some of the facilities provided by the CP/M DDT command.

This section does not describe all of the DDT commands since many of these
duplicate features of the Front Panel, which is generally more powerful.

If you mistype one of the commands described it may produce a bewildering
response if it is one of those recognized by DDT but not described below.

You should note that if a breakpoint instruction (code O0FFH) is executed
while under the control of DDT, a DDT breakpoint will be executed and the
Front Panel will NOT be entered.
The following procedure is recommended:
1 Load the module(s) to be tested into memory using the DDT I and R
commands (described below)
2 Type <CTRL/C> to exit from DDT

3 Type <CTRL/F> to enter the Front Panel if debugging is necessary

4 Save the program with the SAVE command if required

Initiating DDT

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. It is, however, suggested that
DDT is not used for debugging purposes as the Front Panel is, in many ways,
superid;:—-DDT is initiated by typing one of the following commands at the
CP/M Console Command level:

Debugging your programs

DDT
DDT filename.HEX
DDT filename.COM

where "filename" is the name of the program to be loaded. In these cases,
the DDT program is brought into main memory in the place of the normal CP/M
Console Command Processor; thus, it sits directly below the Basic Disc
Operating System portion of CP/M. The BDOS starting address, which is
located in the address field of the JP instruction at location O0005H, is
altered to reflect the reduced Transient Program Area size.

The second and third forms of the DDT command shown above perform the same
actions as the first, except that there is a subsequent automatic load of
the specified HEX or COM file. The action is similar to the sequence of
commands :

DDT
Ifilename.HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to be
tested (see the explanation of the I and R commands below for exact
details).

Operating DDT

Following the sign-~on message, DDT prompts the operator with the character
"-" and waits for input commands from the console. The operator can type
any of several single character commands, terminated by a carriage RETURN,
to execute the command. Each command can be up to 32 characters in length
(an automatic carriage RETURN is inserted as the 33rd character), where the
first character determines the command type. The only two commands
normally used are:

I set up a standard input file control block
R read program for subsequent testing

Execution of DDT may be terminated at any point by typing <CTRL/C>.

You can save the current contents of memory in a file by using a SAVE
command of the form:

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disc (see
below) .

Remember that when SAVE is used to save a memory image it does not save the

machine state. Thus, the program must be restarted from the beginning when
you want to use it or when you want to make further tests.

3.3

Debugging your programs

DDT Commands

Two individual commands are described in some detail. In each case, the
operator must wait for the prompt character (-) before entering the
command .

The I (Input) Command

The I command allows the user to insert a file name into the CP/M default
file control block created by CP/M for the use of transient programs. The
default FCB can be used by the program under test as if it had been passed
by the CP/M Console Processor. This file name is also used by DDT for
reading additional files.

The forms of the I command are
Ifilename
Ifilename.filetype

Subsequent R commands can be used to read the file (see the R command
for further details). The command also allows for any input command line
to be set up for the program under test as if it had been passed by the
CCP; however, its length is limited to 32 bytes.

The R(Read) Command

The R command is used in conjunction with the I command to read files from
the disc into the transient program area in preparation for the debug run.
The forms are:

R
Rb

where "b" is an optional bias address which is added to each program or
data address as it is loaded. The load operation must not overwrite any of
the system parameters from 000H through OFFH (i.e., the first page of
memory), nor should it overwrite CP/M, the relocated DDT, or COS workspace.
If "b" is omitted, then b = 0000 is assumed. The R command requires a
previous I command, specifying the name of a file. The load address for
each record is obtained from each individual record of a .HEX file, while
an assumed load addess of 100H is taken for files with any other file
extension name.

Any number of R commands can be issued following the I command to re-read
the program (assuming the default file control block has not been
destroyed). Further, any file specified with the filetype "HEX" is assumed
to contain machine code in Intel hex format (created, for example, by the
ZASM assembler), and all others are assumed to contain machine code in pure
binary form (produced, for example, by the SAVE command).

Debugging your programs

Whenever the R command is issued, DDT responds either with the error
indicator "?" (which means that the file cannot be opened, or a checksum
error has occurred in a .HEX file), or with a load message taking the form:

NEXT PC
nnnn pppp

where "nnnn" is the next address following the loaded program and "pppp" is
the assumed value of the program counter (either 100H for COM files or
taken from the last record if a HEX file is specified).

NOTE:
1 All numerical values input to DDT must be expressed as hexadecimal
numbers
2 All numerical values output by DDT are expressed in hexadecimal

3 The DDT loading operation can be used to determine the length in
blocks of a program for use in a SAVE Command. For example, enter
"A" and at the prompt > enter
DDT TEST. COM <RETURN>
The following text (or something similar) will be displayed:

NEXT PC
1D00 0100

where "1D00" hex is one greater than the last address in the program; to
convert this value to the number of blocks used by the program, use the
following algorithm:

1 Subtract 1

2 Now take the first two digits and convert them to decimal. The
result is the block size of the program

In this case we have:
D00-1=1CFF

1C Converts to 28 decimal so we can save a new copy of TEST by entering:
<CTRL/C>

SAVE 28 NEW.COM

L

CHAPTER 4

CP/NET BDOS FUNCTIONS

CP/NET is a network operating system that enables microcomputers to access
common resources via a network. Programs may be designed specifically for
use under CP/NET, or they may have originally been designed for use under

 CP/M and need changing to run under CP/NET. In both cases, this chapter
tells you how to write such programs.

The first section is an introduction to network programming; it describes
the capabilities of a network and the various parts of the operating
system. The second section tells you how to modify CP/M programs to run
under CP/NET and you are then shown how to take advantage of the special
facilities of CP/NET. Finally, each CP/NET BDOS function is described in
detail.

Before you read on, a final point must be made. This chapter describes the
use of local discs on network stations but they may not be available at the
time you read it.

INTRODUCTION

In addition to the standard CP/M facilities, CP/NET allows you to do the
following:

1 Make use of the scarce, expensive devices which are shared by all
work stations on the system, for example, discs and printers

2 Run a program from a work station without knowledge of programs
running from other stations

3 Implement an electronic mail system which allows stations to send
messages to one another via the server disc system

The standard CP/NET configuration is shown in Figure 4.1. MP/M is an
operating system which runs the disc and printer server, CP/NET is the
bridge between the server and a number of CP/NET stations.

CP/NET BDOS Functions

4802 Station
with discs
. 480Z Station
‘. with discs
‘ 4802 Station
with discs

Figure 4.1 Standard CP/NET configuration
with local discs

The stations executing CP/M have access to the public resources of the
server and to their own local, private resources, which cannot be accessed
from the network. This configuration permits the server's resources to be
shared amongst stations yet guarantees the security of a station's
resources.

In addition to the arrangement described above, it is possible to access
CP/NET if your station microcomputer lacks disc resources and is

therefore unable to run CP/M; this is shown in Figure 4.2. Here, CP/NOS
provides a "virtual® CP/M 2.X system to the station which can consist of
no more than a processor, memory and an interface to the network. Thus, a
480Z with sufficient RAM can execute CP/M programs, performing its
computing locally and relying upon the network to provide all disc, printer
and other I/0 facilities.

4802 Station
CP/M with discs

480Z Station

< P/M with discs

@Y

4802

. CP/NET Station
4802

<@ Station
4802

CP, Station

Figure 4.2 Configuration with few local discs

CP/NOS consists of the following:
1 A bootstrap loader which can be placed into ROM or PROM

2 A skeletal CP/M containing only the console and printer functions

CP/NET BDOS Functions

3 The logical and physical portions of the CP/NET station

How a station works

The CP/NET station software runs under an unmodified CP/M version 2
operating system. It consists of three modules in addition to the BDOS
and BIOS; these are shown in Figure 4.3 and are listed below:

1 The Network Disc Operating System, or NDOS

2 The Station Network I/O System, or SNIOS

3 A replacement for the normal CP/M CCP

BIOS BIOS
BDOS BDOS
SNIOS
NDOS
TPA TPA
BASE PAGE BASE PAGE
Location 005H Location 0O05H
CP/M system Networked system

Figure 4.3 The structures of a CP/M system and
a networked system

The NDOS determines whether devices referenced by BDOS calls are local to
the station or are located on a remote system across the network. If a
referenced device is remote, the NDOS prepares messages to be sent across
the network and controls their transmission. It also reformats the result
received from the network into a form usable by the calling application
program.

The SNIOS performs primitive operations which allow the NDOS to send and
receive messages across a network. It also provides a number of
housekeeping functions for the NDOS. It performs a similar role to the
BIOS in customizing the operating system to the hardware of your computer.

When your program performs a BDOS Function call, via location 005H, the

CP/NET BDOS Functions

NDOS is entered instead of the BDOS.

MODIFYING PROGRAMS TO RUN UNDER CP/NET

Before converting a program to run under CP/NET you should first ensure that
it will run on the 380Z or 480Z under CP/M; the actions needed are
described in Chapter 2. Only then should you try to get it working under
CP/NET.

All of the CP/M 2.2 functions have corresponding functions under CP/NET.
However, there are special conditions relating to the use of discs and
printers and these are described below.

First of all, you should use Function 12, "Return version number”, to find
out if your program is running under CP/NET. If you do not use it and a
CP/NET program is run under CP/M, it will fail if any special CP/NET
functions are called.

Function 12 returns a two-byte value in register HL. The low-order byte
contains the release number and this is set to 22 hexadecimal if CP/NET is
running under CP/M version 2.2, The high-order byte specifies the
operating system type as given below:

High-order Operating
byte system
0 CP/M
1 MP/M II
2) CP/NET or CP/NOS

The next area you need to look at is file handling. When you make a file
under CP/M it is good practice to first open it; if an error is returned,
the file can then be assumed not to exist. When running under CP/NET,
however, this check will not work: if the file entry is not found in your
current directory, the directory of user 0 will be searched for a system
file of the same name and, if this exists, it will be opened. To get
around this problem, you could check the mode in which the file is opened;
if you try to open a file in write mode and it is opened in read mode, you
can assume that the file opened is in the directory of user 0.

In summary, if a file is opened in locked or read-only mode from a non-zero
user number, the following actions are taken:

1 If the file exists in the same user number, the file is opened
2 If the file does not exist in the same user number, user 0 is
searched. If the file exists on user 0, and it is a system file, it

is opened just as though the file existed under the other user number

3 If the file exists on user zero as a system file, but it is also a
Read-Only file, it will be automatically opened in Read-Only mode

CP/NET BDOS Functions

The open and make file functions differ under CP/NET; they return a two-
byte value called the file ID in bytes 33 and 34 of the opened FCB. The
file ID is needed when performing record locking functions (described in
the last section of this chapter).

You should always close files when running under CP/NET and when your
program doesn't need a file any more, you should close it as soon as
possible, to allow other programs access to it.

When your program outputs to a network printer, the output is spooled and
will not be printed until either the program finishes or sends the code FFH
to the printer. Your programs should not send FFH to a local printer,
neither should they send <CTRL/Z> to the network printer. You can determine
if the printer attached to your station is networked by accessing the
station configuration table (see this chapter under the heading "Device
mapping across the network").

USING THE SPECIAL FACILITIES OF CP/NET

There are a number of special facilities that you can use in programs
running under CP/NET. These are summarized below and described in more
detail in subsequent sections.

The first of these special facilities is improved error handling on
networked devices: using Function 45, "Set BDOS error mode”, you can
define the way that errors will be handled. You might want them displayed
on the screen and/or returned to your program. You might also want to make
use of the extended error facility; this gives you more detailed error
information than you would have been given under CP/M.

The network contains a configuration table for each station and one for
the server. These describe the mapping of devices across the network and
your programs can dynamically modify this mapping, if required.

Applications which access networked drives use the MP/M II file system to
perform file operations and many of these operations have slightly
different meanings than they do under CP/M. Due to the need to prevent
several users writing to a file at the same time, a file locking mechanism
is necessary. By setting the high-order bits of an FCB filename a file can
be opened (or made) in locked mode, unlocked mode or read-only mode. One
other point is important when dealing with files: you should always close
a file when you have finished with it, even read-only files.

Error handling under CP/NET

CP/NET function calls return specific values in the CPU registers. These
values can be pointers to data objects, bit vectors specifying drive status,
directory codes, or success/error conditions. Directory, success and error
codes are returned in register A; pointers and bit vectors are returned in
register HL. Register A is always equal to register L and register B is
equal to register H for all CP/NET return codes.

CP/NET BDOS Functions

When a CP/NET station performs a local file operation, the function
parameters pass untouched to the CP/M BDOS. The BDOS checks these
parameters for wvalidity and calls the BIOS to perform physical 1/0
functions. Two types of error can arise from these local operations:

1 First, the BDOS can detect certain logical problems with a file
function and return a logical error. If it does, an error code is
returned in register A but the calling application program is allowed
to continue

2 Secondly, a physical error is returned when the BIOS is unable to
successfully perform a physical operation requested by the BDOS. When
the BDOS is presented with a physical error, it prints the following
message on the console:

BDOS Err on <x>:
<error message>

where <x> is the drive referenced when the error occurred and
<error message> is one of the four following errors:

(a) Bad Sector
(b) Select
(c) File R/O

(d) R/O

After the physical error message is printed, the BDOS waits for you to
respond to the error with one of two actions. Pressing <CTRL/C> causes the
BDOS to perform a warm boot, aborting the program. Pressing any other key

causes the BDOS to ignore the physical error and continue as if it had not
occurred.

When an application references a networked device, the MP/M II server
performs the actual file operation and returns a message defining whether
the operation was successful or not. Unlike the local case, the station has
only indirect knowledge of any error status. Direct physical error
indications are impossible to obtain because a station has no contact with
the MP/M II input/output coding. Instead, if an error occurs, MP/M II
returns a message showing that an error occurred and indicating the type of
error it was.

When referencing a remote device, the two types of errors possible under
CP/NET are logical errors and extended errors.

Like logical errors under local CP/M, logical network errors define non-
fatal error conditions such as reading past the end of a file or attempting
to open a nonexistent file. Some serious error conditions are returned as
logical errors for functions that expect to process their own errors.

These functions are as follows:

CP/NET BDOS Functions

Function Function
No.
20 Read Sequential
21 Write Sequential
33 Read Random
34 Write Random
40 Write Random with Zero Fill
42 Lock Record
43 Unlock Record

Errors for these functions are returned in register A, so the condition
code upon return to the application program looks exactly as it does under
local CP/M.

Some of the following codes can be returned in register A for each of the
preceding functions:

Code Meaning
00 Function successful
01 Reading unwritten data or no directory space available
02 No available data block (disc full)
03 Cannot close current extent
04 Seek to unwritten extent
05 No directory space available
06 Random record greater than 3FFFF
08 Record locked by another process
09 Invalid FCB
0A FCB checksum error
0B File verify error
oc Record lock limit exceeded
oD Invalid file ID
0E No room in System Lock List

Extended errors indicate that a potentially fatal condition has occurred
during the execution of an MP/M II function. The condition can be a
physical error, similar to the physical errors that can occur under CP/M.
It can also be an error produced by the file system, indicating that the
specified operation violates the integrity of the file system.

There are three ways in which errors can be handled; they are as follows:

CP/NET BDOS Functions

1 Default Mode

2 Return-Error Mode

3 Return-and-Display-Error Mode
The mode which is in use at a particular time can be defined by you using
BDOS Function 45, "Set BDOS error mode". This does not exist under CP/M
and because of this, most CP/M applications run in default mode and abort
if an extended error occurs.
If the NDOS is in default mode, it prints the following error message:

NDOS Err <xx>, Func <yy>

where <xx> is the extended error code (in hexadecimal) and <yy> is the
function being performed when the error occurred (also in hexadecimal).
The NDOS then performs a warm boot, aborting the program.
In return error mode, the NDOS does not display a message or abort the
program. Instead, it sets register A to FF and register H to the extended
error code; it then returns to the application program.
If an extended error is detected in return-~and-display-error mode, the NDOS
displays the error message on the console. However, it does not abort the

program, setting the registers in the same manner as return-error mode.

The following extended error codes can be returned to the NDOS:

Code Error
01 Bad sector-permanent disc error
02 Read-only disc
03 Read-only file
04 Drive select error
05 File open by another process in locked mode
06 Close checksum error
07 Password error
08 File already exists
09 Illegal ? in an FCB
0A Open file limit exceeded
0B No room in System Lock List
oc Requester not logged on the server or function not
) implemented on server
FF Unspecified physical error

Extended error FF can result from only two special functions: Function 27,
"Get Allocation Vector Address" and Function 31, "Get Disc Parameter
Address". Because these functions return a pointer in register pair HL, it

CP/NET BDOS Functions

is not possible to detect a regular extended error. Instead, these
functions return an FFFF value in HL if a physical error occurs.

Not all CP/NET functions are capable of returning extended errors.
However, extended error 0C can be returned on any function. If an extended
error is returned for such a function, the NDOS ignores it. The following
functions can result in the performance of a network access but cannot
produce an extended error:

Code Exror
1 Console Input
2 Console Output
5 List Output
9 Print String
10 Read Console Buffer
24 Return Login Vector
28 Write Protect Disc
29 Get Read-Only Vector
37 Reset Drive
39 Free Drive
64 Login
66 Send Message on Network
67 Receive Message on Network
70 Set Compatibility Attributes
106 Set Default Password

Any other function can cause a program to abort if an MP/M II extended
error occurs, if an unsupported function is passed to the server, or if the
server is not logged in.

Device mapping across the network

The mapping of devices across the network is handled via configuration
tables. These map logical devices to physical devices and there is one
configuration table for each station and one for the server. You can
dynamically alter the mapping of devices using Function 69, "Get station
configuration table address", and you can look at the server configuration
table using Function 71, "Get server configuration table address".

Printer I/0 is handled in the following manner: when the BIOS call is made
the NDOS traps it. The NDOS examines the configuration table to see if the
printer is local to the CP/NET system or networked. If the printer is
local, the call is passed through to the BIOS unchanged.

If the printer is networked, however, the NDOS stores the character to

be printed in a special buffer, located directly below the station
configuration table. When 128 characters are stored, the NDOS sends a List
Output logical message to the server upon which the printer is mapped.

This buffering process improves system performance because one-character

CP/NET BDOS Functions

messages that would congest the network communication interfaces need not
be sent between each station and server.

A station configuration table has the following format:

Offset
in bytes

Purpose

34-35

36-37

38

39

44

45-172

STATION STATUS BYTE This has the format shown in
Figure 4.4.

STATION PROCESSOR ID

DISC DEVICES This consists of 16 two-byte pairs, one
for each drive. If the most-significant bit of the
first byte is set, the drive is on the network.

The server drive code should be in the least-
significant four bits of the first byte. The second
byte should contain the server processor ID

NOT USED

LIST DEVICE If the most-significant bit of the first
byte is set, listing will be output to the network.
The server list device number should be in the

least significant four bits. The second byte should
contain the server processor ID

Used by system

Used by system

List device number of server

List device buffer

Table 4.1 Station configuration table

CP/NET BDOS Functions

The format of the station status byte is shown in Figure 4.4.

r7]s|5]4|3]2|1|0

T——-1 if there is an error

in the message sent

1 if there is an error
in the message received

L—————-———-1 if <CTRL+P> is active

1 if requester is logged
in

Figure 4.4 Format of station status byte

The server configuration table has the following format:

Offset Purpose
in bytes
0 Server temporary file drive
1 Server network status byte
2 Server ID.
3 Maximum number of stations permitted on the server
4 Number of stations currently logged in
5«6 Bit vector of stations shown as logged-in in the
station ID table

Table 4.2 Server configuration table

This information is similar to that contained in the server configuration
table.

Password Protection Under CP/NET

File access by unprivileged users can be limited through password
protection for individual files. There are three levels of password
protection for files:

CP/NET BDOS Functions

1 All access without the password is denied

2 The file can be read without the password, but it cannot be written
to

3 The file can be read and written to without the password, but not
deleted

You can use the SET utility to assign passwords; this is described in the
Research Machines publication:

Network Release 2.1 User's Guide, PN 12262

CP/NET does not support the assignment of passwords across the network.
It does, however, allow an application program to send a password

across the network when a file is opened. This allows a user on a CP/NET
station the most basic form of password support: operation on networked
files which have been previously password-protected.

If a read-protected file is opened and no password is specified, an
extended error is returned across the network and the calling application
aborts. The same error is also returned when an application attempts to
write to a write-protected file for which no password was provided when the
file was opened. Finally, any attempt to delete, rename, or change the
attributes of a delete-protected file without providing a password results
in an extended error.

CP/NET also supports Function 106 (Set Default Password). This provides a
default password against which all protected files are checked if no
password is provided or if the password is incorrect. This function can
relieve an application of the necessity to parse passwords constantly into
the first eight bytes of the current DMA buffer.

CCP.SPR does not support MP/M II's facility of supplying passwords when you
enter a command line. Because of this, you should not password-protect COM
files unless a default password utility is provided.

Because CP/M 2.x does not support any kind of file protection, passwords
are ignored when referencing files on drives local to a CP/NET station.

TEMPORARY FILENAME TRANSLATION

Many common application programs use temporary files. The names of these
files often have the form FILENAME.$$$ or $$$.SUB. When multiple copies of
these applications run on different stations logged on to the same

server, a number of the temporary files can have the same name, thus
causing extended MP/M II errors that abort the application program.

To solve this problem, each station's NDOS recognizes temporary filenames
destined for networked drives and implicitly renames them, so the filename
an application presents to the operating system is not the one the NDOS
presents to the MP/M II file system.

CP/NET BDOS Functions

Each occurrence of the string $$$ in the first three bytes of a filename,
as well as any filetype of $$$, forms a CP/NET message with a filename or
filetype of $<xx>, where <xx> is the ASCII representation of the station
ID byte. Because all stations have a unique ID, this modification
guarantees the uniqueness of temporary filenames.

The modification is transparent to the calling application program. When
the NDOS modifies a filename in a CP/NET message, it converts the filename
back to its original form before updating the application's FCB. The only
possible change to the FCB is that interface attributes set in the high-
order bits of the filename strings modified are reset. This change poses
no problems if temporary files are truly temporary. You should treat
temporary files like Read-Write files with the DIR attribute; delete them
before the application program terminates.

Functions 17 (Search For First Directory Entry) and 18 (Search For Next
Directory Entry) do not perform temporary filename translation when
referencing a networked drive. If a user creates a file with a temporary
filename and then attempts to locate it within his directory, this can be
confusing.

For example, suppose that a user working on station 5A enters the
command:

REN $$$.$$$=BLAH.TMP

Suppose, then, the user enters a DIR command. The file previously renamed
will appear as

$5A.$5A
in the directory.
If a temporary file is referenced on a drive that is local to the CP/NET
system, the filename passes unmodified to the BDOS. No conversion is

necessary, because there is no possibility of conflict.

CP/NET BDOS FUNCTIONS

This section describes CP/NET functions which have no counterpart under
CP/M. They are listed below.

CP/NET BDOS Functions

Function Function Function Function
No No
38 Access drive 66/67 | Reserved
39 Free drive 68 Get network status
40/41 | Reserved 69 Get station configuration
42 Lock record table address
43 Unlock record KAl Get server configuration
44 Reserved table address
45 Set BDOS error mode 72/105| Reserved
46/64 | Reserved 106 Set default password
65 Log off

These functions include MP/M II functions which do not exist under CP/M, as
well as a set of dedicated CP/NET functions. All of the functions adhere
to exactly the same calling conventions as the rest of the CP/M functions
and all follow the same conventions regarding return codes.

Function 38: Access Drive

Entry Parameters:
Register C: 26H
DE: Drive Vector in the form of a bit map

Return Values:
Register A: Return Code
H: Extended Error

The server maintains a system lock list which contains an entry for every
disc drive in the system. If a program sets one of these entries, using
the "Access drive" function, the drive concerned will be locked in respect
of access from another program.

The "Access Drive" function inserts a dummy open file item in the system
lock list for each drive specified in its drive vector (a 16-bit vector
in which each possible drive is represented). Bit 0 represents drive A:,
bit 1 drive B:, continuing through 15 for drive P:.

If the server's system lock list does not have enough room to hold all the
dummy items for all the drives specified, or if the open file limit for
the server process is exceeded, none of the items is inserted and
Function 38 returns an extended error.

If the NDOS is in return error mode (see Function 45, "Set BDOS error
mode"), an error condition on Function 38 causes register A to be set to
OFFH and register H contains one of the following codes:

CP/NET BDOS Functions

Code Meaning

0A Open File Limit Exceeded
0B No Room in the System Lock List

ocC Server Not Logged In

Because Function 38 is meaningless to local drives under CP/NET, no call to
the local BDOS is made.

Function 39: Free drive

Entry Parameters:
Register C: 27H
DE: Drive Vector in bit map form

The "Free Drive" function purges the server's lock list of all items
relating to the drives specified. The drive vector is a 16-bit vector
in which each possible drive is represented. Bit 0 represents drive A:,
bit 1 drive B:, continuing through 15 for drive P:.

Because dummy drive accesses, locked records, and open files are all
purged, you should close all important files before issuing a free drive
call. Otherwise, a checksum error is returned on the next file access and
data might be lost.

The CP/NET CCP calls this function every time a program terminates. This
prevents the server process associated with the station from becoming
clogged with useless files.

Because the "Free Drive" function is meaningless under CP/M, the operating
system ignores entries in the drive vector which specify drives local to
the station.

This function has no error return.

Function 42 Lock record

Entry Parameters:
Register C: 2AH
DE: FCB Address

Return Values:
Register A: Return Code
H: Extended Error

The "Lock record" function gives your program exclusive write access to a
specific record of a file opened in unlocked mode. Using it, any number of

CP/NET BDOS Functions

station processes can simultaneously update a common file.

To lock a record, your program must place the logical record number to be
locked in bytes 33 to 35 of the file's FCB. The file ID number must be
placed in the first two bytes of the current DMA buffer (this file ID
number is a two-byte value which is returned in bytes 33 to 35 of the FCB
when the file is opened in unlocked mode). When the "Lock record" function
is called, a pointer to the FCB must exist in register pair DE.

The record to be locked must reside within a block which is currently
allocated for the file. The lock fails if the record is locked by another
process or station (this prevents two processes from simultaneously
updating the same record and leaving it in an indeterminate state).

If a file was opened in locked mode, the "Lock record” function always
returns successfully but no explicit action is taken because the whole
file is locked in the first place.

To use the "Lock record" function, you should follow these steps:

1 Open the file in unlocked mode, then save the file ID which was
returned in the random record field of the open FCB

2 When the application needs to update the record, lock the record
even before attempting to read it. Reading a record which is locked
by another process can result in you leaving the record in an
indeterminate state. If an error results because the record is
locked by another process, you should repeat this step until the
record is locked successfully. When retrying the lock, place a
timeout value in case another station has locked the record and
then gone off line

3 Read the record

4 Update the record

5 Write the record back
6 Unlock the record

The "Lock record" function returns a zero in register A if successful.
Otherwise, it returns one of the following error codes in register A:

01 Reading unwritten data

03 Cannot close current extent to access extent specified
04 Seek to an unwritten extent

06 Random record number greater than 3FFFF
08 Record locked by another process

0OA FCB checksum error

0B Unlock file verification error

0C Process record lock limit exceeded

0D Invalid file ID in the DMA buffer

0E No room on the system lock list

FF Extended error

CP/NET BDOS Functions

The following extended errors can occur:
01 Permanent error
04 Select error

0C Requester not logged in to server

The "Lock record" function has no meaning when a drive local to the station
is referenced. It returns with register A set to zero.

Function 43 Unlock record

Entry Parameters:
Register C: 2BH
DE: FCB Address

Return Values:
Register A: Return Code
H: Extended Error

The "Unlock record" function releases a previously locked record, allowing
it to be locked and written to by another station. The record to be
unlocked must be placed in bytes 33 to 35 of the file's FCB. The file ID
must be placed in the first two bytes of the current DMA buffer (the file
ID is a two-byte value which is returned in bytes 33 to 35 of the FCB when
a file is opened in unlocked mode). Register pair DE must contain a
pointer to the FCB.

The "Unlock record" function returns successfully if one of the following
occurs:

1 The file was opened in locked mode
2 The record specified is already unlocked
3 The record is locked by another process

In all these cases no action is performed.

You should not unlock a record until the station's application program
has finished updating the locked record and has written it back out to
the file. Otherwise, another process might inadvertently destroy the
updated information.

The "Unlock record"” function returns a zero in register A if successful.
Otherwise, the function returns one of the following error codes in
register A:

CP/NET BDOS Functions

Code Meaning

01 Reading unwritten data

03 Cannot close current extent to access extent specified
04 Seek to an unwritten extent

06 Random record number greater than 3FFFF

0A FCB checksum error

0B Unlock file verification error

0D Invalid file ID in the DMA buffer

FF Extended error

The following extended errors can occur:
01 Permanent error
04 Select error

oc Server not logged in

The "Unlock record" function is meaningless when it references a station's
local drive; it returns a zero in register A.

Function 45: Set BDOS error mode

Entry Parameters:
Register C: 2DH
E: Error Mode

CP/M returns a very limited amount of error information. However, when
running under CP/NET you can ask the system to generate further
information by using Function 45, "Set BDOS error mode".

When this function has been called, the NDOS is provided with the
following options:

1 Aborting on extended errors

2 Returning the extended error to the calling application for
handling

3 Returning the error to the application and displaying it on the
console

All station application programs are initially loaded in a default
environment. This causes the NDOS to abort on extended errors and to
display the extended error code. You should use Function 45 to change this
default mode to a mode which depends upon the contents of register E. The
values you can specify are shown in Table 4.3.

CP/NET BDOS Functions

Table 4.3 BDOS Error Modes

Register E Explanation

O0FFH Return-Error Mode. BDOS returns extended
errors coming from the network to the
application program. Register A is set to
OFFH, and register H contains the extended
error code. No error message is displayed
on the console.

OFEH Return-and-Display Mode. BDOS returns the
extended error in the same manner as in
Return-Error Mode, but also displays an
extended error message.

Any Other Value Default Mode.

Function 45 is not implemented across the network. The NDOS maintains
its own internal error mode flag and acts upon returning network messages
according to that flag.

The "Set BDOS error mode" function has no effect on physical errors
returned by the station's local BIOS. These errors always display an
error message, then they give you the option of aborting the application
program or continuing.

Function: 65 Logoff

Entry Parameters:
Register C: 41H
E: Server ID

Return Values:
Register A: Return Code
H: Extended Error

The "Logoff" function completes a session and breaks the logical binding
between the server specified in register E and the calling station. Once
a Logoff has been performed, the server process is free to begin a session
with another station.

Function 65 returns a 0 if successful. It returns an extended error 0C,
station not logged on to server, if unsuccessful.

CP/NET BDOS Functions

Function 68: Get network status

Entry Parameters:
Register C: 44H

Return Values:
Register A: Network Status Byte

The "Get network status" function returns the station configuration table's
network status byte in register A. It also resets any error conditions in
the status byte.

For a description of the fields contained in the station status byte, see
Figure 4.4.

Function: 69: Get station configuration table address

Entry Parameters:
Register C: 45H

Return Values:
Register HL: Table Address

The "Get Station Configuration Table Address" function returns the address
of the station configuration table maintained in the SNIOS. Using this
function, an application can dynamically modify the mappings of devices
across the network. The utilities NETWORK and LOCAL use Function 69 to
accomplish this kind of modification.

For a description of the fields in the station configuration table, see
Table 4.1.

Function 71: Get server configuration table address

Entry Parameters:
Register C: 47H
E: Server ID

Return Values:
Register HL: Server Configuration
Table Address

The "Get server configuration table address" function returns a pointer to
a copy of parts of the specified server's configuration table. The ID of
the server to be examined is passed in register E prior to calling Function
71 and a pointer to the received information is returned in register pair
HL.

The data structure addressed by HL has the following format:

CP/NET BDOS Functions

Byte Purpose
00-00 Server Temporary File Drive
01-01 Server Network Status Byte
02-02 Server ID
03-03 Maximum Number of Requesters Permitted on the Server
04-04 Number of Requesters Currently Logged In
05-06 Bit Vector of Requesters Logged In in the Requester ID
Table
07-16 Requester ID Table

This information is identical to that contained in the server configuration
table, except that a byte containing the server's temporary file drive has
been added to the front of the table.

Function 71 can determine whether other stations are logged in to a
server. The temporary file drive can be used when an application wants to
leave a file on a server but does not know the names, capacity, or type of
the server's disc drives. The MAIL utility makes frequent use of

Function 71.

The server configuration table is returned across the network into a
special buffer in the NDOS. If more than one call is to be made to
Function 71 and the calls reference a different server each time, the
buffer is overwritten by each successive call. If an application must
examine more than one server configuration table at a time, the table must
be copied down into a buffer defined by the application.

If Function 71 passes a server ID to which the calling station is not
logged on, an extended error 0C (Station Not Logged In) is returned.

Function 106: Set default password

Entry Parameters:
Register C: 46H
DE: Password Address

The "Set default password®” function allows an application to specify a
password that is checked if an incorrect password is presented during an
"Open file" function call. If a file is password protected, MP/M II first
checks for a password in the current DMA buffer. If no match is found,
MP/M II then checks the default password set by Function 106. If it finds
a match, it allows the requested operation to succeed. Otherwise, it
returns an error.

When Function 106 is performed on a station, the station's NDOS
attempts to set the default password on every server to which a drive is
networked by that station. Since Function 106 has no error return,
extended station-not-logged-in errors are ignored.

CP/NET BDOS Functions

Each server process uses an MP/M II default password slot, starting with
console 0 and using as many slots as there are stations supported.

The default password set by Function 106 persists until another default
password is set.

Advanced use of CP/M

CHAPTER 5

MORE ADVANCED USE OF CP/M

There are a number of things which you may want to do to your system to
personalize it: you might want to gét more information from the BIOS disc
handling routines or add a new device. The next section tells you how you can
do this by taking, as an example, the addition of a new device. Following
this is a section which describes the BIOS internal routines in detail. The
two final sections describe the tables which define the disc system in use
and the layout of page zero of memory.

ADDING A DEVICE HANDLER

If you add an unsupported device to your system you will need to write a
"Jdevice handler" to handle the interface between CP/M and that device.
Once you have done that you will need to build it into CP/M. There are
two stages to this:

1 You need to rebuild CP/M to run in a different size of memory; this
will ensure that your driver can run in a protected area of memory

2 You then need to connect your handler to CP/M
These aspects are covered below.

Running CP/M in a different area of memory

You can reduce the size of the TPA by running MOVCPM. For example, the
following call will reduce the size of a 56Kb system to 55Kb:

MOVCPM 55 *
The new operating system will be built in a buffer and will not be
executed. You can then use SYSGEN to copy the operating system to another
disc. This procedure is described in the following manual:

CP/M Operating System Version 2.2D Users Guide, PN 11901

Now, when you load this new disc and press the "B" command, the cold boot
loader will load your new system.

The above seguence describes the basic principles; however, you need to
add your device handler and connect it up before the new system is written
to disc. You can do this by stopping SYSGEN when the new operating system
is in the buffer, then patching it using the Front Panel.

Connecting your device handler to CP/M

The BIOS uses a "jump vector" to point to its device handling routines.
The jump vector is a sequence of 17 jump instructions that send program
control to the individual BIOS subroutines. The BIOS subroutines may be

Advanced use of CP/M

empty for certain functions (i.e., they may contain a single RET operation)

during reconfiguration of CP/M, but the entries must be present in the jump
vector. -

The jump vector takes the form shown in Table 5.1.

Offset from Instruction Purpose o
start of BIOS
(in HEX)
0 JMP BOOT ;ARRIVE HERE FROM COLD

; START LOAD

3 JMP WBOOT ;ARRIVE HERE FOR WARM START —
6 JMP CONST iCHECK FOR CONSOLE CHAR READY

9 JMP CONIN i READ CONSOLE CHARACTER IN a
ocC JMP CONOUT iWRITE CONSOLE CHARACTER OUT -
OF JMP LIST ;WRITE LISTING CHARACTER OUT .
12 JMP PUNCH iWRITE CHARACTER TO PUNCH DEVICE

15 JMP READER ; READ READER DEVICE -
18 JMP HOME ;MOVE TO TRACK 00 ON

; SELECTED DISK

1B JMP SELDSK ; SELECT DISK DRIVE .
1E JMP SETTRK JSET TRACK NUMBER

21 JMP SETSEC ; SET SECTOR NUMBER N
24 JMP SETDMA ;SET DMA ADDRESS -
27 JMP READ ;READ SELECTED SECTOR .
2a JMP WRITE ;WRITE SELECTED SECTOR

2D JMP LISTST ;RETURN LIST STATUS T
30 JMP SECTRAN ; SECTOR TRANSLATE SUBROUTINE -

Table 5.1 The BIOS jump vector

Advanced use of CP/M

The address of the warm start vector is held in locations 0001H and 0002H.
In your programs you should define this point and access the jump
instructions in terms of offsets from it.

There are three major divisions in the jump table: the system
(re)initialization, which results from calls on BOOT and WBOOT; simple
character I/0 performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH,
READER, and LISTST; and disc I/0 performed by calls on HOME, SELDSK,
SETTRK, SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in ASCII,
upper and lower case, with high order (parity bit) set to zero. An end-of-
file condition for an input device is given by an ASCII CTRL-Z (1AH).
Peripheral devices are seen by CP/M as "logical" devices and are assigned
to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines
(LISTST may be used by PIP, but is not used by the BDOS).

The characteristics of each device are shown in Table 5.2.

Device Characteristics

CONSOLE This is the keyboard and screen on the 480Z and 3802Z.
It is accessed through CONST, CONIN, and CONOUT

LIST The principal listing device, if it exists on your
system, is usually a printer

PUNCH This is a "null" device

READER This is mapped to the SIO-4 port

Table 5.2 Device characteristics

A single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously.

Disc I/0 is always performed through a sequence of calls on the various
disc access subroutines that set up the disc number to be accessed, the
track and sector on a particular disc and the direct memory access (DMA)
address involved in the I/0 operation. After all these parameters have
been set up, a call is made to the READ or WRITE function to perform the
actual I/0 operation. There is often a single call to SELDSK to select a
disc drive, followed by a number of read or write operations to the
selected disc before selecting another drive for subsequent operations.
Similarly, there may be a single call to set the DMA address, followed by
several calls that read or write from the selected DMA address before the
DMA address is changed. The track and sector subroutines are always called
before the READ or WRITE operations are performed.

Advanced use of CP/M

The READ and WRITE routines perform several retries (10 is standard) before
reporting the error condition to the BDOS. If the error condition is
returned to the BDOS, it will report the error to your program.

The exact responsibilities of each entry point subroutine are given in the
next section.

BIOS entry point subroutines

The jump vector contains a number of jump instructions which point to the
subroutines which handle each device. These subroutines are described
below.

BOOT The BOOT entry point gets control from the cold start
loader and is responsible for basic system initialization,
including sending a sign-on message. The various system
parameters that are set by the WBOOT entry point must be
initialized, and control is transferred to the CCP for
further processing. Note that register C must be set to
zero to select drive A.

WBOOT The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the Front Panel. The CP/M system is loaded from the first
two tracks of drive A up to, but not including, the BIOS
System parameters are initialized as shown below:

location 0,1,2 Set to JMP WBOOT for warm starts

location 4 High nibble = current user no;
(used only by CCP) low nibble = current drive

location 5,6,7 Set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs

(You should refer to the last section in this chapter for
complete details of page zero use.) Upon completion of
the initialization, the WBOOT program branches to the CCP
to (re)start the system. Upon entry to the CCP, register
C is set to the drive to select after system
initialization.

CONST Samples the status of the currently assigned console
device and returns OFFH in register A if a character is
ready to read and 00H in register A if no console
characters are ready.

CONIN The next console character is read into register A, and
the parity bit is set (high order bit) to zero. If no
console character is ready, this routine waits until a
character is typed before returning.

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

SETSEC

SETDMA

READ

Advanced use of CP/M

Sends the character from register C to the console
output device. The character is in ASCII, with high order
parity bit set to zero.

Sends the character from register C to the punch device.
The character is in ASCII with zero parity.

Sends the character from register C to the punch device.
The character is in ASCII with zero parity.

Reads the next character from the reader device into
register A with zero parity (high order bit must be zero);

- an end-of-file condition is reported by returning an ASCII

CTRL/Z(12H).

Moves the disc head of the currently selected disc
(initially disc A) to the track 00 position

Selects the disc drive given by register C for further
operations, where register C contains 0 for drive A, 1 for
drive B, and so on up to 15 for drive P (the standard CP/M
distribution version supports four drives). On each disc
select, SELDSK returns, in HL, the base address of a 16-
byte area, called the Disk Parameter Header, described in
the next section. For standard floppy disc drives, the
contents of the header and associated tables do not
change. -If there is an attempt to select a nonexistent
drive, SELDSK returns HL=0000H as an error indicator.

Register BC contains the track number for subsequent disc
accesses on the currently selected drive. The sector
number in BC is the same as the number returned from the
SECTRAN entry point. Register BC can take on values in
the range 0-76 corresponding to valid track numbers for
standard floppy disc drives and 0-65535 for non-standard
disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disc accesses on the currently selected drive.
The sector number in BC is the same as the number returned
from the SECTRAN entry point.

Register BC contains the DMA (disc memory access) address
for subsequent read or write operations. . For example, if
B = 00H and C = 80H when SETDMA is called, all subsequent
read operations read their data into 80H through OFFH and
all subsequent write operations get their data from 80H
through OFFH, until the next call to SETDMA occurs. The
initial DMA address is assumed to be 80H.

Assuming the drive has been selected, the track has been
set, the sector has been set, and the DMA address has been
specified, the READ subroutine attempts to read one sector

Advanced use of CP/M

based upon these parameters and returns the following
error codes in register A:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero value
as the return code. That is, if the value in register A
is 0, CP/M assumes that the disk operation was completed
properly. If an error occurs, however, BIOS attempts at
least 10 retries to see if the error is recoverable. When
an error is reported the BDOS will print the message "BDOS
ERR ON x: BAD SECTOR". The operator then has the option
of pressing RETURN to ignore the error, or CTRL/C to
abort.

WRITE Writes the data from the currently selected DMA address to
the currently selected drive, track, and sector. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

LISTST Returns the ready status of the list device. The value 00
is returned in A if the list device is not ready to accept
a character and OFFH if a character can be sent to the
printer.

SECTRAN Performs logical-to-physical sector translation to
improve the overall response of CP/M.
In general, SECTRAN receives a logical sector number
relative to zero in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector number
in HL.

DISC PARAMETER TABLES

Tables are included in the BIOS to describe the particular characteristics
of the disc subsystem used with CP/M. This section describes the elements
of these tables. ’

In general, each disc drive has an associated (16-byte) disc parameter
header that contains information about the disk drive and provides a
scratchpad area for certain BDOS operations. The format of the disc
parameter header for each drive is shown below.

Disc Parameter Header
[_xLT | 0000 | 0000 [0000 | DIRBUF | DPB | csv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disc
Parameter Header (DPH) element is as follows:

Advanced use of CP/M

XLT Address of the logical to physical translation
vector, if used for this particular drive, or
the value 0000H if no sector translation takes
place (i.e., the physical and logical sector
numbers are the same) .

0000 Scratchpad values for use within the BDOS
(inhitial value is unimportant)

DIRBUF Address of a 128-byte scratchpad area for
directory operations within BDOS. All DPHs
address the same scratchpad area

DPB Address of a disc parameter block for this
drive. Drives with identical disc
characteristics address the same disc parameter
block

csv Address of a scratchpad area used by software
check for changed discs. The address is
different for each DPH

ALV Address of a scratchpad area used by the BDOS to
keep disc storage allocation information. This
address is different for each DPH

The disc parameter block (DPB) for each drive is more complex. A
particular DPB, which is addressed by one or more DPHs, takes the general
form

rSP'l‘IBSH]BI.M[EXMIDSHIDRM]ALO[AL1]CKS]0FF]
16b 8b 8b. .~ 8b 16b ~ 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the 8b or 16b indicator
below the field. The fields are shown in Table 5.3.

Advanced use of CP/M

Field Purpose
SPT The total number of sectors per traék
BSH The data allocation block shift factor, determined by
the data block allocation size
BLM The data allocation block mask (2[BSH-1])
EXM The extent mask, determined by the data block

allocation size and the number of disc blocks

DSM Determines the total storage capacity of the disc drive
DRM Determines the total number of directory entries that can
be stored on this drive (ALO,AL1 determine reserved
directory blocks)

CKs The size of the directory check vector

OFF The number of reserved tracks at the beginning of the
(logical) disc

Table 5.3 Fields of disc parameter block

The values of BSH and BLM determine (implicitly) the data allocation size
BLS, which is not an entry in the DPB. Assuming that a value has been
given for BLS, the values of BSH and BLM are shown in the table below.

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63
16384 7 127

where all values are in decimal. The value of EXM depends.upon both the
BLS and whether the DSM value is less than 256 or greater than 255. For
DSM<256 the value of EXM is given by:

BLS EXM
1024 0
2048 1
4096 3
8192 7
16384 15

Advanced use of CP/M

For DSM>255 the value of EXM is given by:

BLS EXI]
1024 N/A
2048 0
4096 1
8192 3
16384 7

The value of DSM is the maximum data block number supported by this
particular drive, measured in BLS units. The product BLS times (DSM+1) is
the total number of bytes held by the drive and, of course, must be within

the capacity of the physical disc, not counting the reserved operating
system tracks.

The DRM entry is one less than the total number of directory entries. The
values of ALO and AL1 are determined by DRM. The values ALO and AL1 can
together be considered a string of 16-bits, as shown below.

1 awo AL1]
I

r r r T ° T T [1 [T 1]

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labeled ALO
and 15 corresponds to the low order bit of the byte labeled AL1. Each bit
position reserves a data block for a number of directory entries, thus
allowing a total of 16 data blocks to be assigned for directory entries
(bits are assigned starting at 00 and filled to the right until position
15)s Each directory entry occupies 32 bytes, resulting in the tabulation
below.

BLS Directory Entries
1024 32 times # bits
2048 64 times # bits
4096 128 times # bits
8192 256 times # bits

16384 512 times # bits

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, there are 32

directory entries per block, requiring 4 reserved blocks. In this case,
the 4 high order bits of ALO are set, resulting in the values ALO = OFOH
and AL1 = 00H.

The CKS value is determined as follows: if the disc drive media is
removable, then CKS = (DRM+1)/4, where DRM is the last directory entry
number. If the media are fixed, then set CKS = 0 (no directory records are
checked in this case.)

Finally, the OFF field determines the number of tracks that are skipped at
the beginning of the physical disc. This value is automatically added
whenever SETTRK is called and can be used as a mechanism for skipping

Advanced use of CP/M

reserved operating system tracks or for partitioning a large disc into
smaller segmented sections.

Returning to the DPH for a pafticular drive, the two address values CSV and
ALV remain. Both addresses reference an area of uninitialized memory
following the BIOS.

The size of the area addressed by CSV is CKS bytes, which is sufficient to
hold the directory check information for this particular drive. If CKS =
(DRM+1)/4, (DRM+1)/4 bytes are reserved for directory check use. If

CKS = 0, no storage is reserved. '

The size of the area addressed by ALV is determined by the maximum number
of data blocks allowed for this particular disc and is computed as
(DSM/8)+1.

RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations 00H and OFFH, contains several
segments of code and data that are used during CP/M processing. The code
and data areas are given in Table 5.4 for reference:

This information is set up for normal operation under the CP/M system, but
can be overwritten by a transient program if the BDOS facilities are not
required by the transient.

Due to the system structure, it is a non-trivial task to run programs from
location OH. 1If you do this, you must take all responsibility for the
results. As an added disadvantage, you will not be able to use the
firmware facilities.

Advanced use of CP/M

Locations
from to

Contents

0000H-0002H

0003H-0003H

0004H~-0004H

0005H-0007H

0008H-002FH

0030H~-0037H
0038H~-003AH
003BH-003FH
0040H~-004FH
0050H-005BH

005CH~007CH

007DH-007FH

0080H~-00FFH

Contains a jump instruction to the warm start
entry point. This allows a simple programmed
restart (JMP 0000H) or manual restart from the

front panel

Contains the Intel IOBYTE (not used)

Current default drive number (0=A,...,15=P) and
user number :

Contains a jump instruction to the BDOS and
serves two purposes: JMP 0005H provides the
primary entry point to the BDOS, as described in
Chapter 2, and LD HL,(0006H) brings the address
field of the instruction to the HL register
pair. This value is the lowest address in
memory used by CP/M (assuming the CCP is being
overlaid). The DDT program will change the
address field to reflect the reduced memory size
in debug mode.

(Interrupt locations 8 through 28; not used)
(Locations 0028-002FH and 0010-0015H used by)
(COS/ROS)

(Used by COS/ROS)

(Used by the Front Panel)

(Not currently used; reserved)

A 16-byte area reserved for scratch by BIOS

(Not currently used; reserved)

Default file control block produced for a
transient program by the CCP

Optional default random record position.
Default 128-byte disc buffer (also filled with

the command line when a transient is loaded
under the CCP)

Table 5.4 Reserved locations in page zero

File-to-file copy program

APPENDIX A

A SAMPLE FILE-TO-FILE COPY PROGRAM

The program on the following pages provides a relatively simple example of
sequential file operations. The program source file is created as
COPY.ZASM using the CP/M TXED program and then assembled using ZASM,
resulting in a HEX file. The LOAD program is used to produce a COPY.COM
file, which executes directly under the CCP. The program begins by setting
the stack pointer to a local area and proceeds to move the second name from
the default area at 006CH to a 33-byte file control block called DFCB. The
DFCB is then prepared for file operations by clearing the current record
field. At this point, the source and destination FCBs are ready for
processing, since the SFCB at 005CH is properly set up by the CCP upon
entry to the COPY program. That is, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record
field at 007CH. The program continues by opening the source file, deleting
any existing destination file and creating a new destination file. If a 11
this is successful, the program loops at the label COPY until each record
has been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed and
the program returns to the CCP command level by jumping to BOOT.

You should note that there are several simplifications in this particular
program. First, there are no checks for invalid file names that could, for
example, contain ambiguous references. This situation could be detected by
scanning the 32-byte default area starting at location 005CH for ASCII
question marks. A check should also be made to ensure that the file names
have, in fact, been included (check locations 005DH and 006DH for nonblank
ASCII characters). Finally, a check should be made to ensure that the
source and destination file names are different. An improvement in speed
could be obtained by buffering more data on each read operation. One
could, for example, determine the size of memory by fetching FBASE from
location 0006H and using the entire remaining portion of memory for a data
buffer. In this case, the programmer simply resets the DMA address to the
next successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the buffer
and incremented by 128 bytes to the end as each record is transferred to
the destination file.

P T T T s s e T e P R R R R R R AR T R L R R L R AR R A At ¢
L L°p UOTSIDIA WSVZ fursn paIquISSy 4 !
»

.yozeasay Tev3aThra Aq pa11ddns weiboxd e woxy paatIaq

£L°p WSYZ Y3aTa AT3091TP 3TT3 WOD 2onpoad o3 €8 2°a €1
‘PRTITPONH

-umoys Is8pIO @Y3 UT SSTT3 UOTIBUTISIP PUE 3DINOS 3yl YA

: wioj ®Y3 3JO PUT[purwwod ® Aq POYOAUT ST XdOD

-s3sTxe Apeaale 3T FT pPa3aTep

8q ATTeT3ITUT TTTA 9[TJ UOTIRUTISAP BYL "3TT3F pat3roeds puodes
® o3ut 9173 Pef3roeds ® jo sjuajzuod ay3z satdod wexboxd sTYL

.
»
*
-
*
.
»
*
»
* LX3-ISEAA:A LXI*ADYNOS:X X40D
*
.
*
.
.
*
* ¥i°Z uorsiap X402
«
c

»
*
»
.
»
»
»
*
»
»
»
-
-
Ll
Ll
»
»

CIOCCC’CCCCI’CCI.'.C.l'...CCCCIClCi..lC..CCC’CC#O&lil’ﬁi‘ﬁ.i..‘(i.l.&

¥0°Z UOTSIDA XdOD Hs

L °beg €8-40N-80 £ LV A SSY 082 TWY

€200
Zz00
L1200
0zo0
6L00
8L00
LLOO
9100
S100
vioo
€100
zL00
1100
0L00
6000
8000
L000
9000
S000
v000
€000
z000
1000

¥0°'Z UOTSIBA XdOD

A2

-

L=
[

SWRUSTTJ @oanos

Ax3us @1039q 400 Xq sessaappe !
#say3 3e peoeld soweusayTry !

¥dL 30 3xe3s !

jutod Xx3jus sogg !
weiboxd 31xs o3 pasn !

¢z °beg €8-40N-80

_ _ ¥S00
nbs ber3z 303ad 31m g£500
nbs be13 TInI 28TP 2S00
nba ber3 °TTJI 3O pus 1500
nba 6e13 TTRI 3291TP 0500
nba bel3 punoy 30U STTI 6900

800

0 nba 0192z L¥00
<Zg nbs Yy3bua1 qo3F 9100
Sv00

sajenbs Teaxsusd H ¥v00

_ _ €woo0
~zT nbs 81713 23e2x0 _u3z Zwoo
-1z nbs 2173 ¥3vam uz Lpoo
<0z nbs °TI3 Pear_uj 0v00
61 nbs S7T3 339T3P_uI 6€00
“91 nbs @173 9S0T2_uz 8E00
“gl nbs @113 uado uzy [€£00

-6 nbs 1azyynq jutad uz 9g00
GE00
sisqunu uoT3dounjy soqd ! PEOO
_ €€00
nbas qo3 821Nn08 ZE0O0
HO0800 nba I9330q STTF L€00
0€00
HD900 nbs oweusTT3 3ISOP 6200
HDS00 nbs sweuslTj °2In0S 8Z00
HOOLO nbs ed3 Lz00
HS000 nba sopq 9z00
HO000 nbs 300495200
sajenby Hye $200

L Ly A SSY 08Z TWY

nonon

[I)

L}

dd4d4
0000
0000
EEEE]
EEEE

0000
0zZo00

9L 00
SL00
vioo0
€L00
0L00
4000
6000

2500
0800

2900
0500
ooLo
S000

sajenby

A3

PIOdax 3IX8u peax ! _ peax TI¥D
qo3 @oanos’dd a1 s &doo
aoanos jo pus 1raun Ldoo !
uado @173 uoj3eurisep ‘uado 8TF3F °danos !
pus o3 dyys ‘sak !¢ ﬁuumoumHuaxo.s ar
¢ TIn3 Kzo3oextp ! _ ber3y TIni_3091TP an
KXz03093TpP uO woox ou bsw’aq ant
8173 @yl o3es8xd ! _ ayeuw 1TIV0
qo3 3sep’dd ant
jussaxd JT saowsx ! 239T9p TIVD
qo23 3sep’aEa anl
uotjeur3isap dead ’‘usdo ®7F3 9dINOS :
pu@ o3 dyys ‘ou ! IiuumonluHxa.N qapr
¢ 3ISTX® 8DaINnOs seop ! bers punoj 30U STTI a0
@113 @0anos ou bsw’Ig an
uado TI¥0
sweua[T3 eoInos’aa a1
Apesx sSqOJ UOTIBUTISIP pue 82INOS t
¥’/(paooa1 3usiind-qo3j 3Issp) ant
0x92'¥Y ant
012z 03 PIOOPI 3JUSIAIND 398 ‘pIAowWaI UIVQ SRY LWeU H
aweua[T3 d4A0wm ! _ q1a1
qo3_3sep’aq a1
sweua (T3 3ISSP‘TIH ant
z / y3abuat qo3‘Dd a1t
qo3 °3S9p 03 PwWeu 9[TJ PUODIS 2Aouw t
)yoe3s TeodoT !¢ 3oe3s’ds a1t
joe3s dn 3es H
ed3y 240
WOO

¢ obeg

wexboaxd UTeH He

£€8~-AON-80 £ L°y A SSY 08Z TIWY

€0L0
zZoLo
LoL0
ootLo
6600
8600
L600
9600
G600
v600
€600
2600
1600
0600
6800
8800
L800
9800
S800
v800
£800
7800
1800
0800
6L00
8L00
LLOO
9L00
SL0O
yL00
€L00
ZL00
LLo0
0L00
6900
8900
L900
9900
§900
v900
€900
¢900
L1900
0900
6500
8500
LS00
9600
S600

100Lad
000G1L1L

6282
4434
Loasit

108800
LOEALL

L09Lad
LOEALL

o€8e
a434
Loasit

10¥9ad
000StL1L

T0E0ZE
0039¢€

oga3d
LOEFLL
00091L¢
000LLO

zovele
LoraeLasa

wexboxd utew

YELO
LELO

SELO
€ELO
0€ELO

azio
¥Zio

Lzio
vZLo

zzZLo
ozio
aiio

¥iio
LLLO

viLo
ZLLo

oLLo
aoto
¥oLo
LOLO

voiLo
ooLo0

00i0

A4

uxn3ax ‘da Aq uaa1bh osbessam 3ajtam

¢ pe3ioejoxd a3Taim OSTP ST

UOT3IRUTIS3IP SSO[D ‘S[TI 3JO pu?

paasneyxs soanos [y3un dool

Zvio

wexboad utew JOo pux ! ipLo
ovio
6EL0 60 6910
3j00q ar 8€1L0 LOLIAELAT S9L0
LELO
_sopq TI¥0 9€10 005000 2910
1933nq 3utad uz‘d a1 SELO 6030 0910
doD o3 ! _ PELO
! cwexboxd 3TX2 €gLO 09L0
ZELO
a3a7dmoo” Adoo Bsu’zq a1 LELO LOEALL aSLO
0€ELO
pua ‘ajeydwoos uoy3zexado Kdoo ! 6Z10
8Z1L0
usddey 3,uprnoys ! wexboxd 31X’z ar LzLo €087 €SL0
: ber3 3032d 3am o 9Z10 4334 6510
po3oejoxd e3tam bsw’ag a1 sZ1L0 102211 9SL0
¥Z1L0
_ @soy2 TIVD €210 100LdD €S10
qo3 3sap’3a a1 zZzZ10 LOEALL 0SLO
o Lzio
‘ :3TTF 30 PU3 0ZLO 0510
6L10
8LL0
LL10
B XAdoo upe 9LlLo L38L FVLO
SLLo
pua o3 drys ‘salk !¢ EnumoumlvﬂMo.Nz qare viio ZL0Z O%LO
¢ 1103 287P !¢ ber3 11n3 osTp ao €110 0033 VVLO
soeds osTp ou bswm’ag a1 zZLLo 100dLL LPLO
Lo
pI00ax 23TIM !¢ 23TIM TIVD aiLto 102800 vvLO
v @bea £8=AON-80 L LV A SSY 08Z WY wexboxd utew
qo3 3sep‘dd a1 6010 LOEELL LVLO
8010
pIodax 8yl a3zram .wﬂﬂu 3O pua 3jo0u H LoLo
9010
os 3T a3t1am dyys ! 3113 30_pua’zN ur S010 2002 €10
¢ °TT3 3o puad ! bery o113 3o pue do voLo 003d AELO

A5

Z8L0

‘Z€ + q93 3sep nba pI0993 3U81IND-qOJ_3S8P 18I0 = £020
qo3 uor3jeuylsap ! €€ s3op :1qd3 ISP 08L0 €310
6LLO 1310
8LL0
eole ®v3ed Hs LLLO
L °beg €8-AON-80 £ LV A SSY 08Z TWY waxe e3ed
_ _ 9LL 0
y¢$9397dwoo . £doo, wiep nuunamiow hmooluul GLLO 6L0Ld9E9 €dLO
y$epe3oejzoad a3tTam, w3ap :pajoejoxd ou....u:lu-l PLLO $L69ZLLL TOLO
s$o0eds e3jep jo 3mno, wjap :eoeds osTp_ou bSW £L10 0Z¥LSLA9 0HL0
,$9o0eds Xiz030911p OU, ujyap :£1039917p uo woox ou Bsw Z,LL0 ¥Y90Zd9H9 4610
1$9173 @oanos ou, wjap :97F3 °0Inos ou bsw |10 €.0Z39F9 IBLO
oLLO
voxe obessew POXTJd Hs 6910
9 ®beyq €8~AON-80 £ L°v A SSY 08Z TWY eoxe obvsssw pPOXTJ
8910
I3y L910 60 aslLo
sopq 1TV 9910 0050dD V8LO
9173 93210 uz’d a1t 1e)ew G910 9130 8810
v9L0
13y €910 62 L8LO
sopq 1TI¥0 z910 0050aD ¥8L0
9773 93TIA U3’‘D a1 :93TIAM 1910 G190 2810
0910
13y 6510 60 1810
_ _sopq TI¥0 8510 005002 FLLO
9113 P®ax u3z’d a1 tpRAIT £GL0 vL30 JLLO
9510
13y SS1L0 6D €LLO
sopq 11Y0 1 29%] 0050dD 8LLO
STT3F °39T9p U3‘D a1 :939T9P €610 €130 9LL0
2510
F2:2] LSL0 60 SLLO
_sopq TI¥D 0SL0 0050ad ZLLO
2173 98019 u3’d a1 :9807D VL0 0130 0LLO
810
134 LYiLo 60 4910
sopq TIV0 9viLo 00500d 2910
8TT3 uado u3z’d a1 :uado gpLo 4040 VL0
YYLO
ssut3nox burTpuey OTTd Hs E€VIO
g obegq £8-AON-80 L L°V A SSY 08Z IWY ssuy3nox Buyrpuey OTTJ

(L bttt ot bt b1

[

[

A6

TLTUM

804 204 00S
1031044 ILIEM OSW
FLFTANOD_ALOD OSH
¥IIand_INI¥d_NJ
T1I4 FSOTD N4
WY¥D0¥d LIXZ

9V14 1104 IOI¥IA
213730

810
9600
zoL0
€4dL0
6000
0L00
09L0
Jaad
9LLO

p930939p SA0IIS ON

o¥dz 0000 VT4 1DI¥d I¥M ddad
¥dl 0010 ADVIS ¥22Z0 TWYNITIZ FOUNOS D500
avay dL1o N3O V9L0 ds_a10 1310
114 E0¥NOS ON DSW d8L0 Ia NO WOOM ON DSW d6L0 IOVdS OSIA ON 9SW 0€L0
AV 8810 II4 FITEM_ NI G100 714 AVIE_Nd D100
FTI4 NId0 Nd 4000 TI4 ALFTIA NI €100 FTI4 ILYIID NI 9100
T4 ANNOJ ION ITI4 4ddd ¥3aang ITId 0800 HISNIT €24 0200
9¥14 ATI4 40 ANE 0000 3714 40 ANE 0GLO 9¥14 TI04_0SIA 0000
FHYNITIZ LSEIA D900 TINZNMND-ED4 LSIA €020 €04 1S3IA £JL0
X300 LELO 4SOTO 0LLO sodg s000
:sToquisg
pus 1610 0000
0610
sToquis Ha 6810
6 °beg €8-AON-80 £ L°V A SSY 08Z TIWY sToquis
8810
1yoe3s L8O vzzo
9810
Yoe3s T9AST 9| ¢ z€ s3ap S8L0 vozo
v8L0
ooeds 30®3S Ha €810
g8 abeg €8-AON=-80 L L7 A SSY 08Z TWY aoeds yoeas

A7

File dump utility

APPENDIX B

A SAMPLE FILE DUMP UTILITY

The file dump program on the following pages is slightly more complex than
the simple copy program given in Appendix A. The dump program reads an
input file, specified in the CCP command line, and displays the contents of
each record in hexadecimal format at the console. Note that the dump
program saves the CCP's stack upon entry, resets the stack to a local area
and restores the CCP's stack before returning directly to the CCP. Thus,
the dump program does not perform a warm start at the end of processing.

P

L Ry Y AR L R R AL R

*
»
»
»
Ld
»
»
*
*
»
*
»
L4
»
*
»
*
»
»

£ Ly uorsaep WSYZ Buisn parquessy

-yoxeasey Te3rbra Aq uvorsisa Teurbrao ue wmoxz peidepyw

£1°v WSYZ Y3Tm X73091Tp ®TTJF WOD ®donpoad o3 £8 22a €1
:PeTITPON
-osTp potT3yToeds a2y3z uo 3ISTX2 jou
sa0p JTT3 9yl uu vou:unvum s7 obessaw I0IXd UY °*UOTSUIIXS pue sweu
2Y3 Y3TM X SATIP UO ITTFJ 2yl JO s3juajuod ay3 3urad TTTM YsSTys@

IXI AWNYNITIA:X dWNd

: w103 Sy3 3JO SUTT puewwos e Aq pIayoAuy ST 3II X9y
Uy u@9108 °2Yy3 03 2TT3 POTIToeds ® Jo Huy3lsyy e spuas weaboad sTYL
¥iI°Z UOTS8IBA duna
I IR Y P Y Y R R S R R R S SRS SR R R RS R L Lk

*
»

*
*
-
L4
»
-
»
Ll
*
»
»
»
»
-
*
-
»

S N T S T T

¥0°Z UOTSI2A dWNA Hse

L obeg €8~AON-80 £ L°v A SSY 08Z TRWY

€200
zzo00
Lzoo
0z00
6100
8100
L100
9100
SL00
vioo
€100
zLo0
tioo
oLo00
6000
8000
L000O
9000
§000
vooo
€000
2000
L000

¥0°Z UOTSISA dWNA

B2

0 nbe Bbel3 PSTTTF *933nq

[nba aoeds

|- nbas _ Kpeax pqay

gLLLL0000 nbs ¥sew a7qqTuU MOT

0 nba o192

-8zl nba _ y3buay 13z3nq

L= nbs Bbe13 punoj 30u STT3

sajenba Texauab H

.z¢ nba yabuayt qo3

8Z1 ©3 (I2qWnU PIOD3I (3IX3U) 3JUII1IND! *ZE4+qO3 nbe Io+qo3
8Z1 ©3 (3JUNOD PIODIX S,9TTI! °*GL+4D3 nba 2x-qo3
Iaqunu T99X JUSIAND §,9TTI! *ZL+9°3F nba 1x°qo3
(sas3oezeys ¢) ad&3 31713 °28TP! -+6+923 nba X2°qo3
sweu I3TTI! °*L+993 nba uzy-qoj3

sweu OSTp!? 0+9°3 nba ap-qo3

SUOTITUTJIOP ¥O0Tq TOIIUOD B[TF f

poe3g ouyrTr! yeg nbea 31

uan3ax abetrxaeo! ypo nbe a0

saajoexeyd orydeab uou !

“02 nbs 9113 pPeax ujz

.91 nba °1¥3 @sol2 uj

“Gl nbs 9173 uado uj

‘il nba pqy 3Ise3 uj

-6 nbs x933nq jutad ujz

.z nbes 3no sTosuod uj

-1 nbes uy e1osuod ujz

siaqunu uoT3dUNI SOpPq ¢

ssaappe 1933nq os8tp andut! H0800 nba x2330q
$821ppe YO00Tq [OI3U0D OTT3F! HOS00 nba qo3
¥dl 30 3Ie3s! HOOLO nbs ed3

3utod Lx3ua sopq!? 4ys000 nba sopq

z @beg €8-AON-80

L Ly A S8Y 082

sojenby H,

TNy

$900
voo00
€900
2900
1900
0900
6500
8500
LS00
9500
GS00
vsoo
€500
2s00
L6500
0s00
6v00
8v00
Lvo0
9v00
svoo
vvoo
£v00
Zvoo
L¥oo
ovoo
6€£00
8E00
LEOO
9€00
SE00
veE00
€€00
ZEO0O
LEoo
0€00
6200
8200
LzTO00
9Z00
sz00
yeoo

Bonononowowon L} L B B B

0000
0zZo0
d334
d000
0000
0800
dd4a

0z00
oL00
€900
8900
$900
asoo
2500

Y000
aooo

viL00
0Lo00
4000
€000
6000
2000
Loo00

0800
2600
ooto
S000

sajenby

B3

BUTT Mmeu 3x

®31s *9UTT 3Iusiand uo pejurad sa3kq 9L T exsy

xaqunu 93&q dyys ‘ou ! zaqunu_o34q Ou’‘ZN ar

¢ PUFT 3IUsaand uo sa3kq 9L ! ¥sew oTqqTU MOT aNv
'Y a1

234&q @aes ! v'a a1

2113 3O pus
@3&q 3xau 38b Aq 3es 4Lz
junod a34q 92103

junoo 234&q @°

€

xay ut 934q 3utxd ‘A3dwme 324 3Jou OIT3

3T ¢ _
Ieo ! wexboad 3Tx2‘D qar
sax ! _ _ 1H dod
934q axau 386 TI¥D
Aes ! TH HSNd
:doot @34k
o13z’'TH a1

jutad o3 @34q 3X9u JO IIqUnuU SUTEIUOD TH

¥‘(3unoo x933ng) a1
y3buar x9330nq’‘V a1

pus 03 xspuy I333nqg 38s -3)-o uoriexado uado

wexboxd 3TXe ar
sbessom I0X19 TI¥0
puno3 3jo0u o1T3F bswm’ad at

uin3jex pue ab6essew Xoxx® @ATH /eIyl 3ou OITI

meGUMO.Nz ar
ber3 punoj 30U 3773 ao
2113 anduy dn 328 TIVD

s1933nq aATsssoons 3Jutad pue peax

moulxuMun.mm an
ds’(ds p1o) a1

yoe3zs dn 398

ed3 2d0
WOD
wexboad
abeg €8~AON-80 L L°v A SSY 08Z TWY

t ot o ot bt 1

q autad

o uado

UTeW Hs

[

vLLO
€LL0
S
oLLo
6010
80L0
L0LO
9010
SoLo
voiLo
€0L0
[4141]
L0L0
00tLo0
6600
8600
L600
9600
$600
v600
€600
2600
1600
0600
6800
8800
L800
9800
S800
v800
€800
z800
1800
0800
6L00
8L00
LLoa
9L00
SL00
vioo
€L00
zLoo
LL00
0L00
6900
8900
L900
9900

[

zL0Z 6210
093 LZLO
a, 9¢Lo
LY s2ZiLo

vZ8e €TLO
L3 zTiLo
1086Add 4110
3 FLLo
aito

0000LT €LLO

LoLdZe 8L1L0O
08dE 9110

9110
€EBL PLLO

L0Z6ad LL1LO
LoediLt 30LO

800Z D0LO
J43d4 Y010
1062aD0 LOLO

COVELE VOLO
10z4€.03 00L0

00L0

wexboad utew

B4

0sio

wexboad urtew jo puzg ! evLo
8¥viLo0
d2d @ay3 o3 !¢ I3y LPLO 6D 0SLO
9L 0
UOT3I®D0T }O®3IS §,dO0 SuTejzuod i93utod YoB3S t gpLo
144%]
(ds pro)‘as a1 €EVLO LOZ4ELAE OV¥LO
3Tx0 Ry fo] vio L0¥9dd 6vL0
Lvio
(§300q21 0000 ©3 dunf 3ey3 230u) +4dd 03 uan3zax ‘dunp jJo pus foovLo
6€EL0
:wezboxd 3TX® 8ELQ 6%L0
LELO
doo1 @34q 3jutad ar 9€1L0 SAaslL L¥LO
— - S€ELO
Iaqunu x3Yy 3jutxd TIVD vELO 105800 vvio0
934q 3x@u 192A0091 ! 'y an £E€LO 8L EVLO
x930ereyd 3uUTId T1YD " Z€ELO0 10asad ovio
soeds‘y at LELO 0zZ3e dFELO
xaqunu 83&q 3xXau o3 ¢ TH ONI 0€LO €2 deLo0
6cZLO0
:zequnu 834q ou gziQ acLo
LTLo
1aqunu xay 3uyad 1IVD 9z1L0 L0SBAD VELO
_ _ 'Y at SZLo aL etlLo
zoqunu xay jutxd TIYD vzio 105800 9€1L0
H'Y a1 €210 oL GELO
zZZio
Taqunu 334q 3jutad ‘3T1y L8y ou fLzio
v °beq €8-AON-80 L L% A SSY 08Z TWH wexboxd uten
0zLo
Butrdunp ystuty ‘sek ! wexboxd 3Txa‘gy ape 6L1L0 vi8Z €€lL0
¢ yonays Kay ! Apeax pqy o 8LL0 4434 L€Lo
yoni3s Xay 103 3593 TIVD LiLo 1L0LSAD FZLO
3T T1IY¢D 9110 L0¥9dd €ziLo
SLi0

B5

oLLo
13y 6910 60 0610
8910
Pa2I038a1 FJUSWUOITAUD ! TH dod L9110 L3 dsL0
2a dod 9910 1a ¥sLo
og dod 5910 12 6510
¥9i0
sopq TI¥D €910 00500D 9510
pqy 3883 u3‘d a1 z910 4030 ¥SIL0
1910
poAeRsS JUPWUOITAUS ! og HSNnd 091L0 SO €610
2a usnd 6510 5a zSLo
H Hsnd 8510 sd 1§10
LSLO
paeoqday zesfd 3Fou s3oQ ! 9610
0 @2sIMId3Y3O ’)}oni3s uasq sey Koy 3T ¥ UT L= Y3Tm uanlay ! g610
¥SL0
:jona3s Key 103 3893 €610 1510
zZs10

sur3anox 3Is23 paeoqia Hs LSLO

g @abeg £8=~AON-80 L L°v A SSY 08Z 'IWY sur3nox 3533 paeoqiax

B6

I33397 I1ID0SVY 03 3bueyo

1 0, aav

3T6TP II0SY 03 sbueyo ‘g o3 Tenbs o uey3 ssey

‘g9k !¢ mlccnulnm»mwum~oz qp
¢ 6 ueyy xs3jeaab 3t sT ! ‘oL dd
ASew oTqqTu MOT anv

3ThTIP X3y sSe ¥y 3Jo a1qqTu Mol sjurxd !

:a7qqTu utad

LI

19300IRYD 3utad TIYD
3T’V a1

z930®aRYd 3uTad 11¥0
ao’'y at

P@23 SUTT PuUP uIn3lax abejaaed 3JUTIg

13730

13¥

TH dod

2a dod

0" dod

sopq 11V

_ _v's a1
Ino 8Tosuod uj’y a
og HSnd

aq HSNd

TH HSnd

¥ 19387631 woxy x930exeys e jutad H
r1930vIRYD 3UTId
S9UTINOX JUTIJ He

9 ebeg €8-AON-80 £ 1"V A SSY 08Z TWY

6120
8LZ0
LLzo
9Lzo
stzo
vizo
€Lzo
cLzo
Lizo
oLzo
6020
8020
L0Zo
9020
s020
vozo
€020
[4341]
Lozo
0o0zo
6610
8610
LeLo
9610
$61L0
véeLo
€610
Zelo
L6L0
0610
6810
8810
LB8LO
9810
S8L0
v8L0
€8L0
Z8Lo
%:1%1]
08Lo
6LL0
8L10
LLLo
9L10
SLLO
vLLO
€L1LO
ZLLO
Lo

0€90

voo€
Yo3Ia
4093

62

toasas
¥o3¢g

L0asad
aode

62

[
ia
[

00s0ad
as
2030

SO
sa
sa

$8UTINOI JUTIL

gL10

6L10
LLLO
SLLO

SLLO

vLiLo

LLto
4910

o910
¥olL0

Y910

6910

8910
L9110
9910

€910
Z91L0
09lLo0

4510

asio
asto

asto

B7

2920

L3y 1920 60 L6LO
0920
sopq TIY0 6520 005000 ¥61L0
ae33nq 3juyad uz‘d a1 8520 6030 2610
LSZO0
$ UITA pejeuTWIL} obessem ! 9620
@a Aq A13us uo o3 pejutod ebessow xoazs 3uyad ! 5620
- vs2o
:abessow I01I® €620 Z610
t414]

auy3nox sbessosw I0I1F Hs 1SZ0

8 OO.& £€8-A0ON~80 L Ly A SSY 08Z ‘IWY aurT3inox abessou X011y

0520

13y (3124] 60 1610
_ 8¥Z0

e1qqTu 3utad 11V Lveo 105,00 E8L0

av do0d 920 1d asio
[-424]

a1qqtu 3utad TV 12Z4] 105,aD ¥8LO

vouY EVZO 40 68L0

vouy Zveo 40 88L0

vouy 8 24] 40 L8LO

vouy ovzo 40 9810

av HSnd 6€£20 sd 810
8€Z0
¥ Ul Xequnu wolxj xaqunu xay 3Juyad ! L€T0
o 9€20

:xequnu x8y 3utxd G€Z0 810
VEZO
€€20
i ittt - ¢ ZETO
LEZO

I3y 0€20 60 v8L0
6220

1930ereyd 3uUTad TI¥0 :3utvad 8ZzZoO 10asad L8LO
L2Z0

0L = Y, aav 9z20 LE9D dALLO

L ®begq €8~AON-80 £ L°Vv A SSY 08Z TWY sauY3INOI IUTIAJ

§220

16 ueyy xe3zesrb pzzo aLLo
€220
6 ueyl aazearb 3y aixa8y !t zzzo
1zzo0

jutad are 0220 zZ08L aclto

I Lt oot v oo oo v

B8

L3y
3Tq Axaed 39sax ! ¥ k- {¢]

£3dwe jou STT3J 93EOTPUT O3 UIN3I8X 91039q ber3 Axxeo 39891 3snu
Iojelnundde ay3z uf st 93Lq

(TH) ‘¥ a1
FIH UT ST SsSaippe I3jdeieyd ajniosqe

34 ‘1H aav
X833nq’TH at

SsaIppe 91TJ 3IUSIAIND SA®RS /'pajzudWdIOUT ST zo3zutod

Kiowaw o3 joeq ! ¥’(3junoo xa3jnqg) a1

L + X8puTt = xoput ! ¥ ONI

3Q ©3 X2put uoystoaad arqnop ¢ 0‘a a1
¥v'a aT

i Aouepuadep 193s7hsx STYI JO oIemaeg -pesx I[Tj [nIssesons e a933e
soaa &£q ox9z 03 39§ ST YOTym ¥ I93stbex ul ST 3unod 183yjnqg
(3unod x833nq + x033nqg) 3e a83Aq 9yl peox

LLEO
0LED
60€0
B80€0
LOEO
90€0
SO0€E0
voeo
€0€0
[4234]
Lo€o0
00€0
6620
8620
L620
9620
S620
vezo
€620
z620
1620
0620
6820
8820
L820
2820

:234q 1a33ng peax 5820

L3y
408

Jo® 303 395 Ki1xed Y3TM UIN3ax ‘e3ep 3JO pud

93&q 3xou 396 ‘sa9k ! 934q 1933nq peai‘g qr
¢ PRIITI aazgnqg !¢ bety vOHHHNINQWNSA a2
peax osTp TIYD

asyjoue peax ‘A3dws as3zIng

x933nq wox3 93&q 396 ‘ou ! 93&q a23Ing peax’zN ap
¢ 1933nq Fo pua ! 43bual za333nq as
(3unoo xa33nq)‘v a1

8173 wox3y 93&q 3Ixa3u 3ab

v8zo
€820
z820
1820
0820
6L20
8LC0
LLzo
9LZO
SLZO
veeo

4 gLeTo

ZLZO
LLzo
-0LZO
6920
8920
fL9zo
9920

:934q 3xau 386 g9zp

v9zo

S§3UTINOX BUTTPURY BTITJ Hs €920

6 9begq €8-AON-80 L LV A SSY 082 TWY

sour3Inox Hutrpuey STT4

6D
Le

aL

6l
oooslz

Loldaze
o€
0091
45

60
LE

zo8e
0034

109840

6002
0833
LoLave

Sgl0
vaL0

€4dl0

[4:4%1]
YL 0

J¥L0
gy 10
6¥10
8YL 0

8¥1L0

LYL0
9¥L0

vYLO
TYLo

4610

astio
6L 0
8610

86L0

B9

TSEO

,$o87Tp uo 3juasaxd a1T3 Induy ou, w3yap :punoj jou oT1TJ Bsw [GEO 69024949 €ALO
0GEOD
voxe obessem pPoOXTJd Hs 6VED

L ®beg €8-AO0N-80 £ L°vy A 8SY 08Z 'TWY voxe obessaw pPOXTJ
8¥E0D
13¥ LYEO 60 zdLO
IVED
10xx2 uado 3T uanisx uo Io0j3eInUNODe® UT |- ! GVEOD
YYED
sopq TI¥D EVED 005000 4d10
#1713 uedo uz‘d a1 Zveo 4030 ad10
qo3‘aa a1 LVED 000SLL ¥DL0
oveo
pPXOD9X FUIIAIND IeITD ! ¥‘(a0+qo3) a1 6EED 000LZE LDLO
Jo0j3eTnundoe O3 ox9z ! 0192’V ant .mﬂmo 003€ GSO1L0
LEEO
3anduy 303 @173 9yl uado ! 9g€0
_ _ SEE0
19173 andur dn 398 pEEO soL0
€EEO
ZTEEO
e e mme e ee - ————— t LEEO
0EEO
T3y 62E0 60 ¥OL0
IH dod 8ZE0 13 €010
aa dod LZEO 1a zoLo
o8 dod 9Z€0 12 1010
SZEO
_ _sopq 1I¥D 12411} 0060aD FdL0
9113 peax u3y’‘d a1 €ZEO yLE0 D€L0
qo3‘aa a1 ZZEO0 000SLL 6910
12Z€0
o8 HSnd 0ZEO GO 8410
Fa HSNd 6LED sa L€10
1H HSNnd 8LE0 sq 9410
oL °beq €8-AON-80 £ L°v A SSY 08Z TWYH ssut3nox buiipuey 8174
LLEO
pIOodadx @113 OSTP peax { 9L€0
_ SLEO
:peax OSTP VLEOD 9€10
€LED
zLED

([t b > oot oo o oo ot

B10

d40I_JOVLIS

ITEEIN INI¥d

_ INTHd
NNOJd_ION ITId DSW
6 NYHI Y3LVIAD
¥43AINE_INI¥A_Nd
TId FSOTO Nd
o4 - 404

¥D* 804

avay osIa

V14 @31114 ¥3adng

P®30939p SI0IId® ON

o¥3z 0000 _ _ _¥dlL 0010 0MIS A3N ¥WO4_ISAL LSLO
vezo _ _ddvds 0200 2714 I0dNI 40 I3S SOLO d1Xd ¥AJIINE AVEE 8VLO
SLLO YIEWAN XTH INI¥d S810 YALOVYVHO ININA dSLO d400T ILXE INI¥d FLLO
1810 _ Y0 NZdOo 9110 ds @10 zdlLo YEEWOAN FLXE ON dEL0
€410 ASYW ITALIN_MOT 4000 _ _d7 %000 xavad gex Jdddd4
acLo 4IKd IXIN 13D 8610 agx ISEL_Nd €000 FTI4 aVEE_Nd 100
6000 _ ¥1I4 NIJO NI 3000 100 ITOSNOD Nd Z000 NI T0SNOD Nd 1000
0L00 T4 ANNOJ LON 3FTId d4dd HIONIT €23 0Z00 TH*gDd 8900
€900 Nd°€0d4 4500 X2 404 S900 da-god 2500
oL00 g04 0500 WY¥50dd IIXI 6VL0 FOVSSEN ON¥E Z6L0
9€10 _ 4T4D ¥9L0 ¥ @000 HIONET 33408 0800
0000 INNOD ¥IJIANG L dLO ¥gaang 0800 soag 5000
:stoquig
pu? 99€0 0000
S9€0
sToquis Hs ¥9€0
viL °beq €8~AON~-80 L L°F A SSY 08Z TWY stoquis
_ €9€0
:do3 xoe3s zogg VYEZO
L9€0
¥de3ls TIA8T zg 241983 x! vo s3ep 09€0 vaLo
6S€E0
e9I® OIS Hs 8SEO
€L obeg €£8-A0N~-80 £ L°v A SSY 08Z IWN eaie yoe3s
_ LSEO
doo wox3z antea ds Xxjus! z s3op h&m PTIO 9s¢€0 TdLo
za3utod zx933nq 3nduTt! s3op :3uUnod x933nq GGEO 110
VSEO
©vdI® 9TqRTI®A Hs E€SEQ
ZL °obeq €8-AON-80 L L°% A SSY 08Z 'TWY ®ale aTqETIEA

B11

Random access program

APPENDIX C

A SAMPLE RANDOM ACCESS PROGRAM

This Appendix contains an extensive example of random access operation.

The program listed on the following pages performs the simple function of
reading or writing random records upon command from the terminal. Given
that the program has been created, assembled and placed into a file labeled
RANDOM.COM, the CCP level command

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT
(in this particular case) and, if found, proceeds to prompt the console for
input. If not found the file is created before the prompt is given. Each
prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The
input commands take the form

nWw nR Q

where n in an integer value in the range 0 to 65535, and W, R, and Q are
simple command characters corresponding to random write, random read, and
quit processing, respectively. If the W command is issued, the RANDOM
program issues the prompt

type data:.

The operator then responds by typing up to 127 characters, followed by a
carriage return. RANDOM then writes the character string into the X.DAT
file at record n. If the R command is issued, RANDOM reads record number n
and displays the string value at the console. If the Q command is issued,
the X.DAT file is closed and the program returns to the CCP. In the
interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is
opened or created, followed by a continuous loop at the label "ready" where
the individual commands are interpreted. The default file control block at
005CH and the default buffer at 0080H are used in all disc operations. The
utility subroutines then follow; these contain the principal input line
processor, called "readc." This particular program shows the elements of
random access processing and can be used as the basis for further program
development.

Random access program

Again, major improvements could be made to this particular program to
enhance its operation. 1In fact, with some work, this program could evolve
into a simple data base management system. One could, for example, assume
a standard record size of 128 bytes, consisting of arbitrary fields within
the record. A program, called GETKEY, could be developed that first reads
a sequential file and extracts a specific field defined by the operator.
For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the
"LAST-NAME" field from each record, starting in position 10 and ending at
character 20. GETKEY builds a table in memory consisting of each
particular LASTNAME field, along with its 16-bit record number location
within the file. The GETKEY program then sorts this list and writes a new
file, called LASTNAME.KEY, which is an alphabetical list of LASTNAME fields
with their corresponding record numbers (this list is called an

inverted index in information retrieval parlance).

If you were to rename the program shown above as QUERY and alter it so that
it reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string
that is a particular key to find in the NAMES.DAT data base. Since the
LASTNAME.KEY list is sorted, one can find a particular entry rapidly by
performing a "binary search," similar to looking up a name in the telephone
book. That is, starting at both ends of the list, one examines the entry
halfway in between and, if not matched, splits either the upper half or the
lower half for the next search. You will quickly reach the item you are
looking for and find the corresponding record number. You should fetch and
display this record at the console, just as was done in the program shown
above.

With some more work, you can allow a fixed grouping size that differs from
the 128-byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record. Knowing
the group size, one randomly accesses the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, one can improve QUERY considerably by allowing boolean
expressions, which compute the set of records that satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL and an AGE lower
than 45. Display all the records that fit this description. Finally, if
your lists are getting too big to fit into memory, you should randomly
access key files from the disc as well.

S ey R R S R L AL A AL

*
»
»
»
-
*
»
Ed
»
-
»
»
-
»
»
»
*
»
»
L
»
»
Ll
»
»

£ L°p UOTSI®A WSYZ bHursn pefquessy

-yoaeessy 1e3thbra Aq periddns Ayteurbrio wmeaboad v woxy padoreasa

£ L°v WSYZ Y3Ta A7309aTP 91T3 WOD @onpoad o3 €8 ©29a €1
IPOTITPON

-wexboxd ay3l

3o BujuoT3OoURN3 309IX00 I0J WOANVY Aq pe3waxd ueaq 9aey pInOYs 3T
387X Apeeale S20p 3T FI °*3ISTX? Apeaale 30U S0P 3IT 3IT PI3IE8Id °q
11TA 9TTJ OyJ *SSP00® WOpPURI I0J Posn ST o1T3 ParsyToeds ayl axaym

LXT-IWYNITII:X WOUANVY

: wx03 9Yy3 jJo puemmod e Aq PINOAUT ST WOANVY

«KkiTeoT3ewo3lne Ioj pe3ssl ST STY3l 3Ing ‘ssaooe

wopuel MOTTe O3 I9339q X0 (°Z UOTS8IaA W/dD seaynbex wezboad ayy
*W/d40 Ispun

S9TTj $S900® WOpPUERI JO UOFIeIJSuUOWSp ¥ se paubysap sy 3T -uorjexado
8y3 103 Iequnu pPIoO9x wopuex ® Buyijyyoeds Xq oeq weyj peax

pue siajdereyd jo sbutils 23038 03 ISSN 9Y3 SMO[T® wmexboad sTUL

¥L°Z uorsaap WOANVY

Y Ty ey e R R R R R R R sl

»
»
L
»
»
L
»
Ll
»
L d
»
*
»
*
»
»
*
R d
»
*
»
*
»
»
*

NS

T T T

¥0°Z UOTSI®A WOANVY Hs

| °beg £8~AON-80 £ L°v A SSY 08Z TIWY

6200
8200
Lzo00
9z00
s200
vzo00
€200
zzo00
Lzoo0
0zo00
6L00
8100
L1100
9100
sLo00
vioo
€100
ZL00
L1000
0L00
6000
8000
L000
9000
§000
voo00
€000
z000
L1000

¥0*Z UOTSIB3A WOANWY

C3

€L00

43 nbs y3bus{ 1233nq SIOSU0D Z.00 = 0200
] nbs 37q 9s®d I9MOT 1LL00 = 5000
0 nba 013z 0L00 = 0000
' nba @2oeds 6900 = 0200
0 nbs 6e13 X0 pesx 8900 = 0000
0 nbe Ber3 30 °3TIm £900 = 0000
0 nbs ° zo3jeUTWILI I933ING 9900 = 0000
0 nba I03PUTWIAIY PIODIX §900 = 0000
‘Lzl nba 3utxd 03 sixeyo xewm p900 = 3L00
Lzi nba peax 03 sieyo xew €900 = d.00
8, nbs puewwod 3tnb 2900 = 1600
A, nbs puewwod 93TIM 1900 = 1500
i nbes _ DuPuwmod peax 0900 = 2500
[nba be13y woox 308IIP OuU 6500 = Jgddd
[nba BbeT3 punoj 3ou STTI 8500 = Jdad
HOZ nbs 0°7 uoTSIaA £500 = 0200
pes3y auty ¢ *otL nbas 3T 9500 = Y000
uanjax abetaaeo ¢ gl nba 19 G600 = 4000
vs00
nﬂulﬂvﬂ Hﬂhﬂﬂﬂm,v H £€S00
zs00
73 nbas wopuea 93TIM _UJ LS00 = ZZ00
g€ nbe wopuex pesxr u3j 0500 = 1200
~ze nbs STT3 °3wa1d U3 6900 = 9100
‘91 nba 2173 9soTd u3 8¥00 = 0100
gL nba 3173 uado u3 (Lpoo = 4000
-z1 nbe UOTSIBA_UI 9P00 = 2000
“0t nbs HOHM#&'@#ONIEH SY00 = Y000
‘6 nbs z9330q 3uTad_UF BHOO = 6000
vz nba 3nd3ino 970SUOD U3 £H00 = 2000
-1 nba uomnql0aow=oolcu Zvo0 = 1000
Lv00
sIiaqunu UOT3IdUNF sodd { ovoo
_ 6£00
GE + Q93 3Tnejep nba 9234q mOT3J19A0 pPI0O3X wWOpURI GEQQ = JL00
€€ + Q93 3Tnejap nba isqunu pIooaI WOPURI [E£00 = dL00
9€00
soas o3 I933nq STTF 3ITneIep { HOB0O nba I933nq °TTF S€00 = 0800
£13ue 91032q 400 Xq 219y pPaI03S SWPUITTF ! HOS00 nba q23 3TNRISP ¥E00 = 0500
¥dl 3o 3ae3s ! HOOLO nbe ed3 €€00 = 0010
jutod Lxjus sodd ! HS000 ubs sopq Z€00 = 6000
1E00
sajenbd Hs 0€£00
z °beg €8-AON-80 L 1"V A SSY 082 TWY sejenbg

C4

dod o3 yd2eq !

uo Lxxeo ‘ou
¢ TIn3 XKzxozoaarp

uo Kxxed ’'s8k !¢
¢ punoj °1¥3 !

uo Kxaed
& I3333q I0 (@°*Z UOTSIdA !

€ 9beg

wexboxd 3Tx® ur
sbessow 3urad TIVO
1103 Ax03001TP bSsu’ad a1
11n3 Lx0309aTp ‘OTT3 23@aIdD FOoUUED ¢
_ Apesx oTT3’ZN ar
ber3 woox 3021TP OU dao
_ sopq 170
qo3 3Tne3sp’‘Iq a1
81T3 °3ea1d uz’d an
3T 93910 o8 o173 uado 3ouued '
_ Kpeox o133’2N ur
be13 punoj 30u ¥TT3 ao
_ sopq 1I¥D
qo3 3Tne3ep‘aad a1
2113 uado uz‘’d a
§seo0® WOpUERI I0J UOTSIA 3ID2IX0D !
:30 UOTSIDA
wexboxd 3TX® ur
ebessow 3utad 11D
uoysxea peq bsw’dd a1
jyoeq ob pue obessem ‘UOTSILA PERq]
183k ! ¥O UOYSISA‘ON ur
0°Z uoysxsA 4o
sopq TIND
uofsI8A uz’d at
xonm.mm ant
as’(ds pt1o) a1
UOTSIdA W/dD X02yo pue oe3s dn 3es ¢
ed3 20
HWOD

wexboxd uteW Hs

£8-AON-80 £ LY A 88Y 082 TWY

S O R N N R R

zzZio
[X4X]
0zLo0
6110
8L1L0
LLLO
9110
sitio
viiLo
€L10
cLio
Lito
oLLo
60L0
8010
LOLO
9010
S0L0
v0L0
€0L0
zoL0
Loto
ooLo0
6600
8600
L600
9600
$600
V600
€600
2600
1600
0600
6800
8800
L800
9800
S800
v800
€800
2800
1800
0800
6L00
8L00
LLOO
9L00
SL00
vi00

[33:13

10€3ad
zoavilL

800¢
4483

005000
0006t 1L
9130

vioz
24343

0050ad

0006tL1L
4030

L1881

10€3ad
zoeTLL

800¢€
ozaa

005002
2030

€060L€E
zoLaELaT

wexboad uTtew

9¢1L0

€ELO
OELO

azio
oczio

6Z10

9zZ1Lo0
veLo

zzio
0zL0

ato

¥iLo
8lLL0

8lLL0
9110

€LL0
0LLo

aoLo
J0L0

6010
LoLO

voio0
00L0

00tLo0

C5

buyssaooxd 103 Apeax ST °oTTJ H

um:maaoolwwaldwm
:Apeax o113

8210
LTio
9Zio
sZLo
veio
£2L0

8ELO
8€10

Cé

yoeq doo1 pue

3T Y3ITa Tesp ‘saik
¢ PIod8I pe3x

3T Yata Tesp ‘sok
¢ pIOD3X B3TaM

91T3 @so1d ‘sek
¢ 3Inb

:wexboxd 3Tx®

_ sopq
nu~|u~=uuWﬁ~ﬂn
91T3 985072 u3’D

TIVYD
at
at

:butsseooad 3tub

puewwod 3xau 386

paocoex o3Tam .

ar
TI¥D

:p10093 WOpURI °ITIM

puemwod 3xau 386
piooex peai

arc
TI¥D

:pxooax wopuvI peax

puemmoo 3xau 396
obesssuw juytad
puewwod pITRAUT Bsw’‘dqg

sbessom 101x2 3jutrad -pPTTeA 30U ST puwe

pIooex wopuel peax’g
puPmmoODd peal

*®3TIM 30U SEAM pue

pxoo9x wWOpueRI 93TIM‘Z
puTmmOd 93TIAM

*31nb jou sem pue

putssesoad 3Inb’z
puewmods 3inb

puewmoo peaX WOAJ UINID

are
11V
a7t

wwod

e
dd

wwoo

ar
dd

wwoo

ar
[to]

I uo

¥ ul ST pue 3TN)P I0 23TI)M ‘Ped)y °q Aew x93397 puewwWod

39s 3T 934q ybry FESTD

¢ - _ _ o't
934q MOT3JI9A0 pIODaI WOPURI’TIH
qH’(Isqunu pIodeI wmopuex)

puemmod peaI WOIJ UINIS

7Y UT ST J9qunu PIODII IXIU °IIqUNU PIODII WopueI

puewmod 396

v obea €8-AON-80 £ L°v A SSY 082 TWY

O A |

O O O O R N |

an
al
a1

1 uo
398

1T

-~

LLLO
oLLO
SLLO
vLLO
€LL0
ZLio
LLLo
0LLO
6910
8910
L9110
9910
S91L0
votLo
€910
Z910
1910
0910
6510
8510
LSL0
9510
SSiL0
¥SL0
€S10
Zsio0
Lsi0
0s510
6vLO
8vL0
LvLo
9vLo
Svio
vvio
€EVLO
[4 2%
Lvio
ovio
6ELO
8ELO
LELO
9€L 0
SELO
veELO
£€LO
ZELo
LELO
0ELo
6210

|

0050dD
000Gt 1L
oLd0

Lasi
L0394d

oast
100600

Last
L0€3Ad
z03oLlL

808¢
(AL

1182
L6344

¥i82
Lgad

009¢
00dLLe
ooacee

L033ad

wexboaxd utew

6910
9910
€910
L1910
1910

asio
ostLo

o610

¥SiLo
LSLO

LSLO
sSLo

Zstio
avio

ario
av1i0

6viL0
Lvio

Svio
€EVLIO

Lvio
qELO
g€L0

8€10

c7

ddd o3

H

wexboxd utew jo pug

(ds"pto)‘as

LI
a1

Z8L0
L8Lo
0810
6L1L0 63 a9lo
8L10 20,39L03 6910

sbesseuw jutad 1I¥D
1In3 ostp bsw’aaq a1

sbessom jutxd -I(njyssedOoNSUN 3TIM

uan3yax ‘sek ¢ {n3sseoons °93TIA‘Z up

¢ Inzsseoons 23TIM ! feT3 O °3ITIAM ao
_ sopq TTVO

Auulua’du”ﬁ.un ant

wopueI 23TaM U3z‘D a1l

Iequnu pI0OD9I 3IXBU Y3 O3 PIODIT dYJ I3ITIA

103vuUTWIL] PXODDIX’ (TH) a1

:dooT aeys peax 3o pud

yoeq doot ! 1930e1eyd pareoqhay 3eb ZNLd
11¥3 o3 3x8u ! TH ONI
¥ (1IH) a1

i93d0eIRYd 2I03S ‘puUd 30U

doot 3o 3no dunf ‘s8k ¢ doo7 zeyo pesx 3o pus’z ar
¢ 9UIT 3JO pud ! Iz dd

193UNOD 2103831 ! od dod

1173 ©3 3Ix3u ax03sax ! 1H dod
¥ 03 Xa3deaeyd ! 1930%vIRYD 3096 TIVD
uoT3jeuUT3ISAP 3IXBU ! TH HSNd
I93UNnOO IAeS ! o HSNd

x233nq 03 I93D0BIRYD 3IXSU pEIIX

:z9300xRYD paeoqhey 386

_3933nq o173 ‘IH a1
peax o3 sieyd xeu’'g a1
sbessam jutad II¥D
adwoxd e3ep’za a1

-peax sx9joeIRYD (Z| IO ‘PIISIUNODUS UINIAX sbeTxxed TTIUN
paeoqkey @y3 woxj I833jng oYl TIT3F °23ITIm wopuex v ST STUI

-

:p1009X 23ITIM

2UT3INO0I 23ITIM WOPURY He

g obeg £8-AON-80 £ L°v A SSY 08Z IWd

S O O T R U O O R R |

LEZO
0€Z0
6220
8220
LTTO
9zzTo
s2Z0
vzzo
€220
zzeo
Lzzo
0zzo
6L20
8Lz0
LLeo
9120
S120
vizo
€120
zieo
LLzo
oLzo
6020
8020
L0ZO
9020
s020
vozo
€020
zozo
1020
00zo0
6610
8610
L6L0
9610
S61L0
veLo
€610
Z6L0
i6L0
06L0
68L0
8810
L8LO
9810
S8L0
vetLo
€810

L 0€3ad
Zovell

2082
0034

005042
000§1L1t
zzao

009¢

1401

LL

vose
aoad
Lo
[

L 082dD
s3
el

ooos8Le
dL90

L0€3ad
Z0L9Lt

SUT3INOI B3TIAM

6610
9610

v6L0
6l 0

a8t o

o8L0
¥8L0

88L0
8810
9810

s81L0
14:3%)

8L 0
08L0
aL10
Lo

qLio

¥LL0
6LL0

6L10

9LLO
veiLo

LLLo
910

910

wopuey

Co

9€20

LIy SEZ0

14 %4]

:INISS900NS 93TIM £EZ0
ZETO

62 D610

o610

C10

qou 3t 3ndino dyys
¢ otydeab

386 03 3xou aaes
I193Uncd aaeS

pus o3 dyxs ‘sak
¢ paooai jJo pus
296 03 3Ix8u
I93dRIRYD 3IX3U

Sufy Mmau !

x933nq 3utad ‘sak
¢ Tnjyssaodons peax

g abeg

0820

L3y 6L20 6D
8LZ0
:peax wopuex 3O PuU? LLZO
9L2T0
dooT paodsex jutad ZNLd sLZ0 d3o0l
ol:4 404 vLeo [%]
TH dod €L20 ‘a2
zLeo
1930®eaRYD 3uTId/ON TI¥D LLZ0 totava
eoeds a0 0LZ0 0zad
TH HSnd 6920 %S
ol:4 HSnd 8920 s2
L9920
peax wopuel JO puUd‘Z ur 9920 €082
uovnnﬂSMU&IUHOUOR d0 §920 0034
TH ONI ¥920 €T
(TH) 'Y a1 £920 aL
z920
:dooT paoosx 3utad {970
0920
x9330q 2173 IH a1 6520 0008LZ
qutad o3 sieyo xew’g a1 8520 aL90
LSZO
310 1IY0 9620 L084dd
_ 5520
nHﬂ—WﬂmUUO’ﬂ peax $SZ0
€620
pesx wopuei Jo pus qr z620 6181
sbessow 3utad TTYD 1620 L0€dAD
§38TXa paodax ou bsu’ag a1 0620 zodYll
6vZo
shessawm jurad ‘InJssaoonsuUR peax ! gpzo
_ Lyzo
Tnjssaoons peaix’'yz qare 9¥Zo 8082
ber3 ¥o pesx a0 S¥Z0 0034
vveo
sopq TIY0 €EVZO 00504dd
qo3 3Tnezsp’Ed a1 Zveo 000Gt
wopuex peax uj’‘d a1 LvZ0 1240
_ ovzo
:p1009x pPedX 6EZ0
8€C0
|dUT3INOX peda wopuey Has LEZO
€£8-AO0N-80 £ L°y A SSY 08Z 'IWd 3UT3IN0OI pe’ax

¥olL0

¥oL0

8010
Lo1L0
9010

€210
1010
0o10
4910

agio
qd10
¥E1L0
6810
6910

9€10
vaLo

1810
LEL0
d¥io0

o¥YLO
6¥Y10

LYL0
SY1L0

YL o0
d610
asto

dasl o

wopuey

C11

abeg

aa d04
E e 1T¥D
aa HsSnd

$ T73un 3g £q pesssippe Io3yng oy3 3utad

6ZE0
8Z€0
LZTEO
9Z€0
SZE0
vZeo

:ebessow 3utad gzgo

LE3Y

1930eaRYD 3FUTId TI¥D
ES g § at

z330®aRYD FuUTZd TIVD
as'y a1

®T0SUOD 03 3ITiIo puss

L3y

sopq T1I¥D

_ ¥’z at

3nd3ano afosuod uz’s a1

@I08UOD 03 Y woay I930BIBRYD 93TIM

zzeo
Lzeo
0ZEO
6LE0
8LEO
LLEO
9L€0
SLEO
ViIEO
€L€0
ZLEO
LLEOD
‘ooLgo
60€0

$3TI> 80€0
LOED

90€0

‘ so¢€0
voeo

€0€0

Z0€0

LOEO

00€0

6620

8620

{ L6z
9620

t3930exRYd 3utad G670

L3y
_sopq TIVD
3ndut o10su0d uz‘py a1

¥ OJUT I1930PIPYD ITOSUOD 3IXIU peaI

vezo

€620
¢ z6zo
L1620
0620
6820
8820
L8Z0
9820
s8¢0
v8eo0

:xe30eaRYD 396 €870

z820

3ndino pue 3ndut STOSUOCD Hy 1820

£8~AON-80 L L°Vv A SSY 08Z IWY

La
Los8aad
sa

62

101aad
vozE

itoLaad
aoze

60
005042

ds
z0do0

60

00s0ad
1030

3ndano pue 3nduy

LaLo
vaLo
€410

€310

caL0

44t 0
aaio

¥aio
8diLo

8dLo

Laio

vaio
€dio
Laio

tato

odato

asio
010

: e T X1

aTosuo)

Cc12

sopq
xe33nq 3urad uz‘d

L3y

11¥0

SEEOD
VEED
€EEO
ZEEO
LEEOD
0EED

60 dELO

00500D ¥YELO
6030 83LO

C13

¥ seWTl TH = TH TH'TH aav

¢ sauwTrl TH = D€ H'g a1
b] at
¢ SdwWT3 TH = TH !¢ TH'TH aav

3T6TP 3X8U UT ppe

uanjiax pue

'
*IeYO puPWWOD 2I0388x ‘Ou ! s3T6TP 3O pus ‘DN up
¢ 3TBTp ® z930®IEYO ST ¢ "ol do
10 ans

pua o3 drys ‘sak ! 9UTT puewwod 3o pua’‘g ap

¢ SUTT puUPWWOD 3O pud ! °zo3eutwisl xe33nq do
uor3rsod puewwod 3xeu 03 ! aa ONI
I930BIRYD pURPWWNOD 3XdU ! (Za)'v a1

:X19300IRYD pPURPWWOD peAX

QU1 pueuwwos ‘gg a1
oxaz’Ty a1

SUT[puUPWWOD
019z PIODBX YITA 3Ie3S

¥ UT IX93DeIPYd pPUBWWOD Y3ITA UIN3SX

0192z p1oddX PWnsse

‘3ussead ST Iaqunu OU JT +(9L _ z pOW *3°T) MOTFISAO0
BuriouBT TH O3UT SUT[PUREWOD WOIJ ISQUNU PIODII exn3ded

:9uTT purwwods ssesoxd

L3

suTT puewmos ssssoid TI¥D

purwwod peax ! _ sopq T1Y0
I233nq STOSUOD ‘IQ at

Is3jjnq pesx ujy’n at

sbesssw jutad TIY0

3dwoxd puewwos’zq a1

I233nq STOSUOD 8Y3 03 STOSUOD 9YJ WOIJ PUBWWOD IXSU IY3 pea

:puewwod 386

g 9beyg €8~A0ON-80 £ LV A SSY 08Z TwWd

14:141]
€8E0
Z8€0
L8EO
08€0
6LED
8LEO
LLEO
9LEO
SLEO
vLED
€LEC
ZLEQ
LLEOD
0LEO
69€0
89€0
L9€0
99€0
S9€0
voto
€9€0
29€0
19€0
09¢€0
6SEQ
8GEQ
LSEO
9GE0
SSEQ
VSEO
€GE0
CSEO
LSEO
0S€EQ
6veD
8VEOD
LYED
9%€0
SVEOD
vveo
EVED
(44344
Lveo
oveoD
6€E0
8EEO
LEED
9EE0

o00€
¥oad
0g9a

98¢
ooaa

¥i

T0LOLL
o000tz

62
z2000dd
0050ad
20SD1L1

¥030

L0€dAd
zov¥slLl

sLeo
vLZo
€120
zLeo

oLzo
q020
J0z0
Yozo
8020
Lozo
2020
9020

€020
0020

06020

dd1L0
2410
6410
9410
vdaLo

Ldio
qFL0

310

3ndino pue 3nduy ®rosuo)

C14

vevo

£ZV0
1yoe3Is ZZvo 60€0
}oe3ls TIA®T 91! (45 8 Levo
* 3op _ 0zvo 6320
4 s3°p :ds pTO 6L¥0 L3zo
_ 81L¥0
(44 s39p _ OUTT_puruwmod Livo L2020
_ _ i 839p :®ZT8 X933INQ_STOSUCD 9Ly0 9270
y3busy aojynqg °10S8UO0D q3ep :3933nq 2TOSUOD GLHO 0Z SO0
vivo
eaxe ®3ed Hs ELVO
LL °beq €8-AON-80 £ L°V A SSY 08Z IWY eaxe e3eq
_ o ZLvo
.mumﬁunﬂ 30u saop piodax, wyep :83STX? GNOUWH OE|UHE tivo J9€9692ZL Jd¥Z0
,$§0STpP UO WOOX dI0W OU, w3iep :1In3 287P bsw QLY0 A90ZA9FY V6TO
\$§ < puBRmWOD 3IXdU, w3ap :3dwoxd puewwod 60v0 ¥YLB8LSYEY VBZO
,$-urebe K13 ‘pueuwWoOd PTLRAUT, w3isp :puewwod PTIRAUT Hsw 80V0 199.3969 F9ZO0
+$ < eaep adX3, wjisp _ :3dwoxd e3ep LOVO S90L6L¥L 1920
,$ooeds Kx03021TP OU, wiep :TIN3 wuouuwuwc!muﬁ 90¥0 ¥90Zd4939 IVCO
,$319339q 0 Z°T uorsasa w/do pesu nok ‘Kaaos, wisp :uoTSI®A peq Bbsm GO0VO0 ZLTLA9EL €TTO
yovo
eoxe 2bessauw poxXTd Hs €0V0

oL °bea €8-AON-80

£ L°v A SSY 08Z TWY

pvoie obessouw pPaxTJd

aseo za9ddn sansud !
puewwod °910389x !

LAY

:ouTy puemmOd 3O Pud

¥'31q esed I8MOT say

104 aav

1s376Tp JO puU@

1930eIEYD pURWWOD PeSX ape

6 9beq £8~-AON-80

£ L%y A SSY 08Z TWY

zovo
Lovo
00V 0
66€0
86€0
L6EO
96€0
S6€E0
v6€0
£6€0
Z6€0
L6€0

60

dVED
0£90

8d8lL

220

zeeo

0zeo
aLzo

aLeco

oLzo

and3no pue 3nduy 3T0SUOD

31bTP 3XdU = D€ !
0L sewy3l TH =

z saewTl TH + 8 SdWII TH =
g S2uWIl TH =

£ f 1 t ©t © ¢t

o
m o

o€’ TH aav
ox9z'’'g a1

¥'0 a1
o€'1TH aav
IH'TH aav

A A A |

06€0
68E0
88€0
LBEO
98€0
S8EO

60
0090
av

60
6T

|

g12z0
6L20
8120

Li1zo
9Lzo

C15

qQu003Y HLIUM

0 NOIS¥IA

FOVdS

¥OOTY WOANYY qvay
FA0 QMODTY WOANVY
T aNVWWOD SSEdo¥d
as_ato

1104 OSIA_9SW
NI¥d Ol SHVHO XVW
¥VHD QUVOEXTA 13D
NOISHZA_NJ

ATTA NIIO_NJ
ATI4 FSOTD Nd
WY¥90¥d 1IX3

IT ONYRWOD 40 aNg
4D

LdWO¥d ANVHWOD

910
8iLo0
0200
LSLO
4,00
0020
LaCO
¥6Z0
JL00
6L10
2000
4000
oLo0
6910
zeeo
aooo
¥8Z0

003¥ WOANYY ILIUM OSLO
0°Z NOISNZA 0200
OLYNIWNEL GHODEY 0000
¥4 O ava™ 0000
WON Q4003 WOANWY az00
4007 QY0DFY ININA 6dL0
T4 WOO¥ I0IMIA ON 4ddd
04 AMOLOIUIA OSW FpZO
LIg ESVO WAMOT 000
ANVAWOD 15 FdL0
WOONYY Qvad_Nd 1200
FTIA FLIVIEOD Nd 9100
AQVIN FTIA BELO
T¥VHO avay 40 aNZ 8810
€04_110vd3d 2500
IS 34409 _FT0SNOD 9920
ANIT ANYWHOD £DZ0

zL 9bea €8-40N-80

_ _ ouaz

SYT4 X0 ILIUM

_ var
1n4SSADINS_avIN
4YHD ANVWWOD_avay
ONISSEO0dd LINJ
dDYSSAN INI¥d

IXZ q¥00T¥ ON_DSW
NOISNIA avd DSW
_ a1

¥IALOVHVHD 13D
¥434INE AVIE_NJ
10400 FTOSNOD Nd
14 ANNO4 ION 114
Y3 WOANVY 40 aNZ
_ LdWo¥d vivd
47 434409 TTOSNOD
YOILUNIWNEL ¥3ddng

pua

L L°v A S8SY 08Z TWY

0000
0000
oo0L0
LgL0
2020
Loto
€dL0
davzo
€220
Y000
€210
Y000
2000
dada
¥oli0
19zo0
0zoo
0000

Pe830838p SI1011I9 ON

stoquis Hy SZTVO

T04SSIOONS_ITIIUM D610
ANYWWOD FII™M LS00
AOVIS 60€0
Q400F¥_avay ae6lo
ANYWWOD_avad 2500
ANVHWOD 1IN3 1500
WIIDVEYHD ININ 1AL0
¥WWOD GITVANI_9SW 9Z0
avId 0L SUVHD XWH dL00
ANYWWOO_LXIN 1E9 8€10
WOGNVY_3II¥M_Nd 2200
¥IIINE INIYd_Nd 6000
I0dNI ATOSNOD Nd 1000
¥3IA0E ITI4 0800
S1ISIA 40 aNE HALZO
_ 4780 sato
¥34dNdg ATOSNOD §DIZ0
soag 5000
:sToquig

LZVo 0000

9TV o

sToquis

C16

Use of memory by CP/M

APPENDIX D

USE OF MEMORY BY CP/M

Memory
Area Locations | (Hex) Contents
0-2 RST 0 Jump to BIOS warm start entry point (shared
with COS and ROS)
3 Reserved
4 System use (associated with logged-in drive)
System 5-7 Standard BDOS function entry point (shared with
Area COS and ROS)
8 RST 8 Not used - reserved
E-F Top of physical RAM + 1
10-17 RST 10 Used at power-up
18-1F RST 18 Reserved
20-27 RST 20 Used by COS/ROS
28-2F RST 28 COS/ROS CALR mechanism
30-37 RST 30 COS/ROS EMT mechanism
38-3F RST 38 Break to Front Panel - also used by DDT and
ZSID
40-43 Disc map (system use only)
44-4F Reserved (system use only)
50-5B Not used (disc maps)
5C=-7C File Control Block (FCB) area (default)
66-69 Front Panel single step
- locations restored after single step
- cannot single step through file access
7D-7F Random record position (default)
80-FF DMA buffer area (128 bytes) for input and
output (default)
Transient
Program 100... Area where programs are loaded
Area

Advanced use of CP/M 5.1
Appending to file 2.12
Assembling your programs 1.5

Basic Disc Operating System 1
Basic Input/Output System 1.2
BDOS 1.2
BDOS functions 2.1

- access drive 4.14

- close file 2.23

- compute file size 2.32

- configuration tables 4.20
- console input 2.5, 2.17

- console output 2.4, 2.18
- delete file 2.25

~ direct console 1/0 2.6, 2.19

- free drive 4.15

- get ADDR(Alloc) 2.28

- get ADDR(disc parms) 2.29

- get allocation vector add. 4.8

- get console status 2.6, 2.21

- get disc parameter address 4.8

- get network status 4.20

- get read/only vector 2.28

- introduction 4.1

- list output 2.6, 2.19

- lock record 4.15

- log off 4.19

- make file 2.26, 4.5

- open file 2,23, 4.5

- print string 2.19

- punch output 2.6, 2.18

- read console buffer 2.5, 2.20

- read random 2.30

- read sequential 2.25

- reader input 2.6, 2.18

- rename files 2.26

- reset disc system 2.22

- reset drive 2.33

- return current disc 2.27

- return log-in vector 2.27

~ return version number 2.22, 4.4

- search for first 2.24

- gsearch for next 2.24

- select disc 2.22

- set BDOS error mode 4.18

- set default password 4.21

- set file attributes 2.29

- set random record 2.32

- set/get user code 2.29

- simple devices 2.3

- system reset 2.7, 2.17

- unlock record 4.17

.2

INDEX

- write protect disc 2.28
- write random 2.31
- write random (zero fill) 2.33
- write sequential 2.25
Binary files 2.8
BIOS 1.2
BIOS entry point subroutines 5.4

CCP 1.2, 4.3
Closing files 2.7, 2.12
Command line 1.2
Command line tail 2.13
Configuration tables 4.9, 4.5
CP/M
- interface with COS/ROS 1.1
- interfaces 1.1
- structure 1.1
- system entry points 2.1, 1.1
- use of memory A.1
CP/M 2 system interface
- introduction 2.1
- operating system functions 2.17
- transporting software 2.16
- using BDOS disc functions 2.7
- using simple BDOS functions 2.3
CP/M interfaces
- user interface to CCP 1.2
CP/NET 4.1
CP/NET BDOS functions
- access drive 4.14
- configuration tables 4.20
- free drive 4.15
- get network status 4.20
- introduction 4.1
- lock record 4.15
- log off 4.19
- set BDOS error mode 4.18
- set default password 4.21
- unlock record 4.17
CP/NET stations 4.1
CP/NOS 4.2
Current user number 2.29
Currently-selected drive 2.15

DDT

- commands 3.4

- initiating 3.2
Debugging your programs 3.1

- Front Panel 1.7
Default DMA buffer 2.13
Default error mode(CP/NET) 4.8
Delete file 2.14

INDEX

Device handlers
- adding 5.1
= connecting to CP/M 5.1
Device mapping across network 4.9
Direct Memory Access address 2.9
Directory 2.7
Directory code 2.23
Directory operations 2.4
Disc data buffer 2.9
Disc parameter block 2.29
Disc parameter block (DPB) 5.7
Disc parameter header 5.6
Disc parameter tables 5.6
Disc protection 2.14
DMA address 2.9
DPB 5.7
Drive select code 2.8
Duplicate filenames 2.26

EMT functions 1.2

EMT instructions 2.2
Emulator traps 1.2
Error handling 2.2

Exiting from your program 2.7

Fault-tolerant software 2.2
FCB 1.2, 2.9 o
FDOS 1.2
File
- closing 2.7, 2.8
- creation 2.7
~ end of file 2.8

- random read from 2.8
= random write to 2.8
- sequential read 2.8

- sequential write 2.7

= updating 2.8
File attributes 2.29
File control block (FCB) 2.9
File control block(FCB) 1.2
File handling under CP/NET 4.4
File locking 4.5
File protection 2.14
File type 2.8
Filename 2.8

Files 2.7
Front Panel 1.7
Function

-0 2.17

-1 2.17

-2 2.18

-3 2.18

-4 2.18

-5 2.19

-6 2.19
-9 2.19
- 10 2,20
-1 2.21
- 12 2.22
- 13 2.22
- 14 2.22
- 15 2,23
- 16 2.23
- 17 2.24
- 18 2.24
- 19 2.25
- 20 2.25
- 21 2.25
- 22 2.26
- 23 2.26
- 24 2.27
- 25 2.27
- 26 2.27
- 27 2.28
- 28 2.28
- 29 2.28
- 30 2.29
- 31 2.29
- 32 2.29
- 33 2.30
- 34 2.31
- 35 2.32
- 36 2.32
- 37 2.33
- 38 4.14
- 39 4.15
- 40 2.33
- 42 4.15
- 43 4.17
- 45 4.18
- 65 4.19
- 68 4.20
- 69 4.20
- 71 4.20
- 106 4.21

Function code 2.2

HEX files
- loading 1.6
High~level languages

- use with Cp/M 2.

HIMEM 1.4
Jump vector 5.1

List device buffer
Loading a HEX file

2

4.10
1.6

Loading and running your

- programs 1.6
Loading your programs 1.6
Logged-in drive 2.15
Logical extents 2.8

Make file 2.9

Memory available to programs 1.4
Memory used by COS/ROS 1.5
Microsoft M80 assembler 1.6
MP/M 4.1

NDOS 4.3
Network Disc Operating System 4.3

Opening files 2.7, 2.12

Page zero

- reserved locations 5.10
Passing filenames to programs 2.13
Password protection (CP/NET) 4.11
Patching programs

- using DDT 3.2

- using Front Panel 3.1
Portable software 2.16
Producing program source 1.5
Program development 1.4

Random file operations 2.12
Random record field 2.30
Random record number 2.10
Records 2.7
Reducing size of TPA 5.1
Rename file 2.14
Reserved locations in

- page zero 5.10
Reset disc system 2.16
Reset drive 2.16
Return and display error

- mode (CP/NET) 4.8
Return error mode(CP/NET) 4.8
Running your programs 1.6

Sequential read from file 2.9
Sequential write to file 2.9
Server lock list 4.15

Server network status byte 4.11
Size of file 2.16

SNIOS 4.3

Software interrupts 1.2

Source files 2.8

Source program 1.6

Space available for programs 1.4
Start address of programs 1.4

INDEX

Station configuration table 4.10
Station Network I/O System 4.3
Station processor ID 4.10
Station status byte 4.10

System attributes 2.29

System entry points 1.1

System lock list 4.14

System parameter area 1.2

Temporary filenames 4.12
Text editor(TXED) 1.5
Transient command 1.2

Transient program area 1.2
TXED 1.5

Use of memory by CP/M A.1
User interface to CCP 1.2

Wildcard facility 2.14

ZASM assembler 1.5

USER’S COMMENTS

To help Research Machines to produce the highest
quality microcomputers, supporting software, and
technical publications, we like to hear from users about
their experiences with our products.

Do share your thoughts with us by jotting them down
on the tear-off form on the next page. You can leave out
your personal details, if you want to. Fold the form in
two, seal it with a piece of adhesive tape, and put it in
the post.

If you would like to give more information than we
have allowed room for on the form, we will be very
pleased to receive a separate letter from you. You can
even use the form to ask for a post-paid envelope, if you
wish.

Additional information will be most useful, if you give
as much detail as possible about your hardware con-
figuration, software version number, or manual title,
so that we can relate your comments to the correct
products.

‘3 .3 .3

7

1 '3

§

1 13

13337737

1

1 1

1T 37113711

1

Postage
will be
paid by

licensee

Seal with self-adhesive tape (not staples) along this edge.

RESEARCH MACHINES

Fold along this line.

Do not affix Postage Stamps if posted in
Gt Britain, Channel Islands, N lreland
or the Isle of Man

BUSINESS REPLY SERVICE
Licence No OF32.

TECHNICAL PUBLICATIONS DEPT
RESEARCH MACHINES LTD

PO BOX 75 OXFORD

OX2 0BR

USER’S COMMENTS CP/M & CP/NET PROGRAMMERS GUIDE PN 12084

User's comments help us to improve our products. If you would like to make any comments,
please use this reply-paid form.

Your comments:

Research Machines may use this information in any way believed to be appropriate and without
obligation.

Although it is not essential, it would be helpful if you gave the following information:

Organization.

AAIeSS

System: 380Z/480Z / Network] Cassette / 5.25" discs /8" discs
(Delete as necessary)

