ZASM

ASSEMBLER

For
Disc & Network
Systems

PN 11066

ZASM ASSEMBLER for DISC and NETWORK SYSTEMS

PN 11066

Copyright (c) 1983 by Research Machines Limited
Printed in Great Britain

All rights reserved. Copies of this publication may be made by customers
exclusively for their own use, but otherwise no part of it may be
reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language without the prior written
permission of Research Machines Limited, Post Office Box 75, Oxforad,
England OX2 OBW Telephone: Oxford (0865) 249866.

The policy of Research Machines Limited is one of continuocus development
and improvement of its products and services, and the right is therefore
reserved to revise this document, or to make changes in the computer
software it describes without notice. Research Machines Limited makes
every endeavour to ensure the accuracy of the contents of this document but
does not accept liability for the consequences of any error or omission.

The original labelled distribution disc is regarded as the only proof of
purchase and must be produced in order to qualify for an update at a
reduced rate. KXeep it safe and always work from copies.

Additional copies of this publication may be ordered from Research Machines
Limited at the address above. Please quote the title as given above.

If you would like to comment on any of our products or services please use
the reply paid form provided at the end of this manual.

PREFACE

This publication describes the facilities of the Research Machines ZASM
Assembler for Disc and Network Systems.

This manual is divided into seven chapters and two appendices. Chapter 1
describes how to run the ZASM Assembler. Chapter 2 describes the elements
of the ZASM Assembly Language. Chapter 3 explains the construction and
layout of an Assembly Language program to be processed by the ZASM
Assembler. Chapter 4 defines the special pseudo operators available in the
ZASM Assembler. Chapter 5 discusses the facility for program relocation
provided by the ZASM Assembler. Chapters 6 and 7 describe the use of
macros and ZASM Assembler directives respectively.

Appendix A is a listing of the instruction mnemonics (and their
alternatives) available in ZASM. Appendix B gives the error codes
displayed by ZASM when errors are encountered in assembler language source
programs.

Related Publications

Users of the ZASM Assembler should also have access to the following
publications available from Research Machines:

380Z/480Z Machine Language Programmers Guide, PN 11068
o This publication is an introduction to

assembler-language Programs and/or Research
Machines Disc or Network Systems.

MOSTEK Assembly Language Programming Manual, PN 11069
This publication describes the facilities

available to the assembler-level programmer
using the 280A microprocessor.

Digital Research CP/M 2.2 Interface Guide, PN 11092

This publication describes how the operating’
system facilities of CP/M may be called from
a ZASM assembler language program.

This publication also refers to the CP/M Operating System Manual, published
by Digital Research and available from Lifeboat Associates Ltd.

ii

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Ci

GETTING STARTED

Introduction

Assembling an absolute program

ONTENTS

Changing disc units

Producing a listing file

Listing on the Console or Printer
Suppressing Object or Listing Output Files
Running the assembled program

Assembling a relocatable program

Running the assembled program

ELEMENTS OF THE ZASM ASSEMBLY LANGUAGE

Symbols
User-Defined
Labels
Local Symbols
Numbers

Symbols

The Dollar Symbol

String and Character Constants

Comments
Expressions

PROGRAM CONSTRUCTION AND LAYOUT

Elements of a ZASM Assembly Language Program

Program Layout

ZASM PSEUDO-OPERATION CODES

ASEG
coM
COMMON
COND
CSEG

- DEFB/L/M/S
DEFW
DSEG
ELSE
END
ENDC
ENDM
EQU
EXTERNAL
GLOBAL
LIBRARY
MACRO

iii

pry
.
-

[NN
.
Vb bWwwwN-=

N
.
-

* e .

.

D)

NNNNMNNNDMNNNON
.
b bdwwhN =

.

e e o o o s o

* e e e e
BB D WWWWWWWWNN =D Qo

.

L A o I
.

NAME

ORG

QUERY

RADB/D/O/H

Data Definition

Free Format Data Definition
Reserving Storage

CHAPTER 5 PROGRAM RELOCATION

Relocation

Simple Relocation

Globals and Externals

The Data-Relocatable Segment
Common Segments

Expression Restrictions
Libraries

CHAPTER 6 MACROS

Parameter-less Macros
Parameter Passing
Concatenation

Parameter Value Passing
Examples

CHAPTER 7 DIRECTIVES

Include
Heading
Eject
List
Numbering
Formfeed
Uppercase
Width
Cross-Reference
Symbols
Print

APPENDIX A INSTRUCTION MNEMONICS

In Alphabetical order
In Numerical order
Alternative Mnemonics

APPENDIX B ERROR CODES

Console Messages

iv

LN R
o e e e e e
NN B

“ e e s

NNN NN N NN NN
DY
BB W W WWwWNN =

Getting Started

CHAPTER 1

GETTING STARTED

Introduction

This is a reference manual for the ZASM Assembler running on Research
Machines microcomputers. It is not intended as a teaching manual, nor does
it attempt to describe machine code. The Machine Language Programming
Guide For 380Z and 480Z provides an introduction to 280 programming.

For further instructional books on Z80 machine language programming we
would suggest contacting either your local bookseller or:

LP Enterprises

8-11 Cambridge House
Barking

Essex.

The ZASM Z80 Assembler translates programs written in the Zilog mnemonic
assembly language for the Z80 into absolute (or relocatable) object code.

The object code is output in industry standard (Intel) hexadecimal format,
or in the case of relocatable code, industry standard (Microsoft)
relocatable format.

ZASM will also produce an annotated listing of the source program. Either
the object output or the listing or both may be suppressed.

The source program input to ZASM is normally prepared using RML's text
editor TXED.

The instruction mnemonics and the hexadecimal representation of the binary
codes into which the assembly program is converted are listed in Appendix
A. For a discussion of each of the 280 instructions refer to either of the
following publications:

280 Assembly Language Programming Manual (Zilog Inc.)
280 Programming Manual (Mostek Corp.)

and it is suggested that you have one or the other of these available.

(Copies can be obtained from Research Machines Limited and elsewhere.)

ZASM directives (most of which specify the format of the source program
listing) are described in chapter 7.

Getting Started

The ZASM Macro facility (which permits a section of source code to be

reproduced in any area of the program simply by mention of its associated
name) is described in chapter 6.

The program relocation facility (permitting any given relocatable program
to be used in conjunction with any other relocatable program) is described
in chapter 5. Relocatable format allows the program sections to be
assembled independently of a specific address and sufficient information is
also held to fix them to a particular absolute address by the Linker.
Relocatable modules must be linked before they can be executed. Only
absolute code can be executed.

Pseudo-opcodes which specify actions required of the assembler and define
data, but do not themselves normally generate executable code, are
described in chapter 4.

The constituent elements of the ZASM Assembly language are described in
chapter 2 and program construction and layout discussed in chapter 3.

'Debugging' or removing the error in an assembled program is a far simpler
task when the contents of memory locations and registers can easily be
changed and the program can be executed one instruction at a time (known as
'single-stepping'). These facilities are provided by the 'Front Panel' of
the computer. The term 'Front Panel' refers to a mode of operation in
which the contents of specified memory locations and processor registers
are displayed on the screen and can be modified by input from the keyboard.
The Front Panel and its operation are described in the Machine Language
Programming Guide and other Research Machines publications.

The remainder of this chapter explains how to assemble and run a program
using ZASM and uses a short assembly language program DEMO.ZSM, which is
supplied on the distribution disc, as an example. You should copy the
files ZASM.COM (the assembler) and DEMO.ZSM onto your system disc before

working through the section (the file copying procedure is described in the
System User Guide).

Assembling an absolute program

A program is assembled by typing ZASM followed by the name of the program
(with a space in between). The command:

A>ZASM DEMO | RETURN

loads the assembler and instructs it to assemble the contents of the file
DEMO.ZSM. If you try the above command you will find, after a period of
disc activity during which some messages appear on the console screen, that
control returns to CP/M. If you now type DIR, you will find that a new
file, DEMO.HEX, has been created. DEMO.HEX contains the output of the

assembly process. This file is used in further processes to be described
below.

Getting Started

Changing disc units

The above example assumed that the source program file DEMO.ZSM was on the
disc in drive A and the object file DEMO.HEX was written onto the same
disc. ZASM uses the extension file name (also called 'file type') in a
rather special way as commands to the assembler, giving the drive names for
the input and output files.

For example:

A>ZASM DEMO.BC

specifies that the source program DEMO.ZSM is on the disc in drive B and
that DEMO.HEX should be written onto the disc in drive C. Note that the
primary file name DEMO is common to both files, and that the extension file
name of the source must be ZSM. Because the extension file name of the
source file is assumed, and the one typed is used for other purposes, it is
never necessary to type the extension name .ZSM in this context, and indeed
to do so will provoke a BDOS error message.

Producing a listing file

If a third logical disc drive name is specified in the position of the
extension file name, for example, if ZASM is invoked by the command:

A>ZASM DEMO.BCD | RETURN

an additional file is produced which contains an annotated listing of the
program. This file has the extension file name PRN. The example above
produces a file called DEMO.PRN on drive D. This file contains a listing
and can be printed and kept as a permanent record of the program, and is
often useful for checking out programs.

Listing on the Console or Printer

As special cases the logical disc drive names X and P can be used to send
the listing file to the console screen or to the printer respectively.
Examples of these are:

A>ZASM DEMO.AARX | RETURN | to produce the listing on the screen
A>ZASM DEMO.AAP | RETURN | to produce the listing on the printer

In both cases the source file DEMO.ZSM should be on the disc in drive A and
the .HEX file is written onto this disc also. Note that a printer option
must have been selected in order to send the listing to the printer - see
the System Information File for details.

Getting Started

Suppressing Object or Listing Output Files

As further special cases, ZASM allows the symbol ‘'Z' to be used instead of
logical disc drive names in the extension file name, to suppress either or
both of these output files. For example:

A>ZASM DEMO.AZA | RETURN | to suppress the .HEX file
A>ZASM DEMO.AAZ | RETURN | to suppress the .PRN file
A>ZASM DEMO.AZZ | RETURN | to suppress both files

The last .AZZ is useful to obtain a quick check for errors, which are
listed on the screen, without producing the other types of output file.

Running the Assembled Program

The object output file produced by the assembler is in a hexadecimal ASCII
format (known as Intel Hex) and needs to be converted into a memory image
(.COM) file before it can be executed. Programs under CP/M (.COM files)
are run in the Transient Program Area (TPA) and have a start address of 100
hex. The CP/M utility LOAD.COM can be used to convert an object file

(.HEX) into an executable memory image (.COM file). To convert the example
object file DEMO, enter:

A>LOAD DEMO

Finally enter:
A>DEMO | RETURN

To run the program.

An alternative, somewhat more complex, method of ¢onverting a .HEX file to
a .COM file involves the use of the DDT utility program and the CP/M SAVE
command. DDT is a CP/M utility for debugging Machine Code programs and
provides similar facilities to RML's Front Panel, but is designed for use
with Intel 8080 mnemonics. For example, the file DEMO.HEX can be converted
to the file DEMO.COM by the following sequence:

A>DDT DEMO.HEX' RETURNI
DDT VERS 1.4

NEXT PC

0130 0100

< (type CTRL/C, without RETURN)

A>SAVE 1 DEMO.COM | RETURN

The advantage of this second method is that it allows a number of .HEX
files to be merged together to form a single program, and it allows access
to the program via Front Panel after loading but before (or during)

running, for debugging purposes. It also allows a start address other than
100 hex.

Getting Started

The LOAD and DDT utilities are described more fully in the CP/M Operating
System Manual (Digital Research TM,

Before reading the next chapter, it is recommended that you experiment with
the commands described above in order to run the demonstration program
DEMO.COM, and produce a listing on your screen or your printer (if you have
one).

Assembling a relocatable program

Assembling a relocatable program follows much the same pattern as

assembling an absolute program. The assembler is invoked by a command of
the form

A>ZASM DEMOR.BCD

as before. Here, the source (DEMOR.ZSM) is taken from drive B, the
assembled object code is sent to drive C and a listing file is sent to
drive D. As before, the object file may be suppressed by sending it to
'drive' Z, and the listing file may be redirected or suppressed by
specifying 'drives' X, P or Z.

The object output so produced differs from absolute code by being written

in the industry standard Microsoft format in a file having .REL as its
filename extension.

Running the assembled program

Link the program by running a Microsoft compatible linker program such as
L80 (as provided with FORTRAN by RML).

This is done by typing

A>L80 DEMOR, MSG, DEMOR/N/E | RETURN

this 1links the files DEMOR.REL and MSG.REL (the latter obtained by
assembling MSG.ZSM) and directs the output to DEMOR.COM. The program may
then be run by typing:

w>oewoR [TETURY]

1.5

3

Elements of the ZASM Assembly Language

CHAPTER 2

ELEMENTS OF THE ZASM ASSEMBLY LANGUAGE

This chapter describes the elements from which assembly language statements
are constructed.

An assembly language statement consists of a line of text, terminated by a
carriage return character (line feeds are ignored). Within each statement
the characters are grouped into 'words' or 'tokens’, separated by one or
more space or TAB characters or by the punctuation characters colon, comma,
and semicolon. The tokens can be classified into:

a) Symbols, which commence with a letter

b) Numbers, which commence with a digit

c) Strings, which are enclosed in single quotes

d) Comments, which commence with a semicolon

e) Local symbols, which commence with a number and end with a
dollar sign.

S: 1ls

A symbol consists of a group of characters drawn from the sets A to Z, a to
z, 0 to 9, period (.), underline, question mark and commercial ‘at' sign
(@). The first character must not be a digit, except in the case of local
symbols (described below). Examples are:

START LOOP1 .OUTC LDIR INC

Symbols may be of any length. However, the assembler only takes into
account the first seventeen characters, and long symbols such as
RIDICULOUSLYLONGNAME1 and RIDICULOUSLYLONGNAME2, which differ only after
the 17th character, are considered identical. By default, the upper and
lower case character sets are not considered distinct. Thus, START and
Start are considered to be identical. This default setting can be changed
with tbe *U directive (see chapter 7).

Symbols are divided into permanent symbols, those known to ZASM before it
starts to process a program, and user defined symbols, which are made known
during the course of assembly by their appearance in a symbol definition
statement or as a label.

Permanent symbols and most user defined symbols may not be redefined. This
means, for example, that a register name cannot be used as a label or in an
EQU statement (g.v.). The statement:

HL: ADD HL,DE

gives an 'R' error, indicating the improper use of the register name HL as
a label. It would be perfectly proper to use the label .HL .

Elements of the ZASM Assembly Language

It is possible to redefine some user symbols. If a symbol is assigned a
value with either the ':=' or DEFL pseudo-operators, rather than = or EQU
or QUERY, it may be redefined by further := or DEFL statements.

User-Defined Symbols

User-defined symbols are useful because they allow the programmer to refer
to a numeric quantity in a meaningful way. For example, the symbol CR can
be used to stand for the ASCII carriage return character whose value is 0D
hex. The statement LD A,CR is much clearer that LD A,0DH, or LD A, 13D.

In addition a numeric quantity which is likely to change during the course
of program development can be defined once at the start of the program and
thereafter referred to symbolically. When the time comes to alter the
value, only the definition needs to be changed, rather than having to hunt
through the program source wondering whether an occurrence of that value
should be changed or not.

User symbols are defined by their appearance in an EQU, QUERY, DEFL, =, or
:= statement. EQU and = (which are synonymous) define a constant value,
which may not be changed thereafter. DEFL and := define a variable, which
may be redefined as often as desired. QUERY is similar to EQU except that

it takes a value from the console keyboard, after issuing a prompt (see
chapter 4). Examples are:

CR = ODH

LF EQU 0AH

SYMBOL = 4

SYMBOL DEFL SYMBOL + 1
VERSION QUERY 'Which version'

It is also possible to introduce user symbols which aid in relocation and
macros. These are described in chapters 5 and 6 respectively.

If, on the second pass through the assembly process, a symbol does not have

a value associated with it, it will be flagged as undefined, giving a >U
error.

Labels

A label is a special case of a user-defined symbol which becomes defined by
its appearance at the beginning of a statement, followed by a colon.
Labels may be preceded in a statement only by another label. The value
assigned to a label is the address of the first byte of code or data
generated by the statement, or, in the case of statements which generate no
code or data, the address of the next such byte. Labels associated with
the pseudo-operators ORG and DEFS are exceptions, being assigned the

address of the next byte which would be generated had there not been an ORG
or DEFS.

Elements of the ZASM Assembly Language

Local Symbols

Local symbols are a special form of symbol which take the form of a
(decimal) number in the range 1 to 255 followed by a dollar ($) character.
Local symbols are used as labels. Unlike normal labels, however, local
symbols have limited scope and may not be referred to past the definition
of a conventional label. Thus, the fragment:

JP 1$
FRED: LD A1
1$: LD B,A

may not behave as expected because FRED is defined between the use and
definition of the symbol 1$. This means that it is possible to give 1% a
completely different value elsewhere in the program, provided that a non-
local label occurs in between.

The main use of local symbols in practice is as targets for jumps within a
routine, with a non-local symbol used for the entry point to the routine.

Non-local symbols may be called global symbols in other assemblers. There
are, unfortunately at least two other meanings associated with the word
global often used in assemblers, associated with relocation. The use of
global to mean non-local is therefore somewhat ambiguous, and perhaps
should be avoided.

Numbers

A number starts with a digit and consists solely of the digits 0 to 9 and,
if expressed in hexadecimal notation, the letters A to F. Note that a
number must begin with a decimal digit to be recognized as such (a zero
will suffice), even though some hexadecimal numbers have a letter as the
leading digit, e.q. the hexadecimal number FFFF should be expressed as
OFFFFH. A single character added to the end of the number is used to
indicate the 'base' or 'radix' in which it should be evaluated. Valid
characters are:

B base 2 (binary)

0O or Q base 8 (octal)

D or . base 10 (decimal)

H base 16 (hexadecimal)

If there is no trailing indicator,the number is evaluated according to the
current default radix. This is initially set to 10 but may be reset to 2,
8, 16, or back to 10 by the pseudo-operators RADB, RADO, RADH, and RADD
respectively. However, there is a problem with using RADH: some 'valid'
hexadecimal numbers end with the characters B and D, so, when the default
radix is set to 16, binary and decimal numbers (indicated by a trailing B
or D) will be treated erroneously as hexadecimal.

One widely held belief is that the default radix used by the assembler
should be the same as that used by the person whose task it is to

Elements of the ZASM Assembly Language

understand the program. Since almost all people use decimal much more
fluently than any other radix, the default radix should therefore be
decimal, and any quantity which is expressed in some other radix should be
flagged with an appropriate trailing character. This overcomes the problem
with RADH, which is only included to maintain compatibility with previous
versions.

The Dollar Symbol

The dollar symbol is a special numeric symbol which represents the current
assembly program counter. The assembler treats it as a number whose value
is the address of the first byte of code or data to be generated by the
current statement. If the statement does not generate any code or data,
the address of the next such byte is assigned. The dollar symbol is often
useful in working out the length of a table. For example:

TBL: DEFB 1
DEFB 7
LEN EQU $~-TBL

LEN becomes the difference between the address of the next byte to be
generated and the address of the start of the table and is thus equal to
the length of the table in bytes.

$ takes on the mode of the current program counter. This is of relevance
only when ZASM is generating relocatable code. See chapter 5 for details.

String and Character Constants

A character string consists of a series of characters enclosed in single
quotation marks ('). Strings of more than one character can only be used
as the argument to the DEFM or QUERY pseudo-operators (see chapter 4).
Within the string, the character up arrow (4#) has special significance.
Rather than generating a data byte it governs what will happen to the
following character:

4' generates '
44 generates 4

In all other cases, the most significant bit of the next character byte is
set. Thus, 'A' generates 41 hex, while '4A' generates C1 hex. This can be
useful for marking the end of a string.

A string consisting of a single character is called a character constant.
It generates a single data byte and can be used wherever an 8-bit number is

allowed. The 'up arrow' construction can be used in a character constant.

ZASM does not support 16-bit (double character) character constants.

Elements of the ZASM Assembly Language

Comments

A comment can form part of any statement. Comments begin with a semicolon
and continue with any sequence of characters up to the terminating
carriage-return. Comments appear on the listing, but are otherwise
completely ignored by the assembler. Their only use is to aid human
understanding of the program.

Much has been written about the use of comments within an assembly language
program. Certainly, they should be used frequently, with about as much (or
more) commentary as program text. A good plan is to give a block of
comment preceding each block of code. The 'one comment per line' school of
thought is not perhaps the best, since many of the comments so generated
convey no useful information and merely serve to clutter up the program.
Comments should serve to describe what the program is doing (or rather

should be doing according to the author) and how it works. A comment such
as:

LD A,0 ;iLoad A register with 0

is useless, while:
LD A,0 iCLEAR PAGE COUNTER

is of far greater value.

Expressions

It is often useful to be able to combine the various numeric and symbolic
elements. User-defined symbols (including labels), numbers, character
constants, and the dollar symbol can be combined in an expression which
consists of any reasonable number of such items separated by the operators
shown in the table below.

Operators of highest priority are evaluated first, with operators of equal
priority being evaluated from left to right. This order of operations may
be altered using parentheses in the conventional waye. However, an
expression may not begin with a left parenthesis, (except in data
definitions such as "DEFB expression" and "expression, expression") since
parentheses are also used to represent indirection within the assembler.

The operators of priority 3 (=, EQ, NE, >, GT, <, LT, GE, LE) produce a
Boolean result, 0 for FALSE and -1 (0FFH) for TRUE.

The arithmetic operators (*, /, +, -, MOD) treat their operands as signed
16-bit numbers. Overflow is ignored.

The logical operators (SHR, SHL, AND, OR, XOR) view their operands as 16-
bit quantities.

Elements of the ZASM Assembly Language

The mode of an expression depends both on the modes of the operands and on
the operators within the expression. The rules are discussed in chapter 5,
since the mode of an object is only of concern when ZASM is generating
relocatable code.

Note that in the case of "COND expression" any non zero value of the
expression is taken as true.

Operator Priority Effect _

+ 6 Unary Plus

- 6 Unary Minus

* 5 Multiplication

/ 5 Division
MOD 5 Remainder

SHR 5 Logical shift right
SHL 5 Logical shift left
+ 4 Addition

- 4 Subtraction

= 3 Equal

EQ 3 Equal

NE 3 Not equal

> 3 Greater than

GT 3 Greater than

< 3 Less than

LT 3 Less than

GE 3 Greater than or equal
LE 3 Less than or equal
AND 2 Logical and

OR 1 Logical or
XOR 1 Logical exclusive or

Program Construction and Layout

CHAPTER 3

PROGRAM CONSTRUCTION AND LAYOUT

This Chapter describes the construction of an assembly language program.
It is based on a 'guided tour' of the program DEMO.ZSM, which is supplied
on the distribution disc. The program is listed below, although if you
have followed the suggestions in chapter 1, and have a printer, you will
have a copy of this already.

Full details of all the constructs mentioned here are given in chapters 4

and 7.
0001*H ZASM DEMONSTRATION
0002 ; DEMO.ZSM - Print a message on the
0003 ; console to validate zasm
/ 0004
| 0005 = 0005 BDOS EQU 5
‘ 0009 = 0006 PRBUF EQU 9
000D = 0007 CR EQU ODH
000A = 0008 LF EQU 0AH
0009
0100 0010 ORG 100H ;Transient area
0011 '
0100 0E09 0012 START: LD C,PRBUF ;Print buf function
; 0102 110901 0013 LD DE,MSG 7Address of msg
| 0105 CD0500 0014 CALL BDOS ;Output message
0108 c9 0015 RET iReturn to CCP
0016
0109 5A41534D 0017 MSG: DEFM 'ZASM welcomes you'
011A 20746F20 0018 DEFM ' to Z80 programming' ‘
012D 0D0A24 0019 DEFB CR,LF, '$"
0020
0100 0021 END START
Symbols:
BDOS 0005 CR 000D LF 000A MSG 0109 PRBUF 0009
START 0100
No errors detected

Program Construction and Layout

Elements of a ZASM Assembly Language Program

Input to the assembler consists of a series of lines of text of the general
form:

label: instruction ;comment
Any or all of these elements may be absent, and indeed a completely blank
line is a valid statement. However, a label (if present) must come first,
and the comment (if any) last. For example, line 12 of DEMO is:

label instruction comment

START: LD C,PRBUF ;Print buf function
This statement causes an instruction to be assembled to load the C register

with the value of the symbol PRBUF (which has already been defined, in line
6 of DEMO, to be equal to 9). The line appears on the assembly listing as:

address generated line
code number
0100 0EO09 0012 START: LD C,PRBUF ;Print buf function

Code bytes OE and 09 are generated and will eventually be stored in memory
at addresses 100 and 101 hex. The label START is assigned the address of
the first code byte, in this case 100 hex (the normal start address of CP/M
programs). The comment is listed, but otherwise ignored. Note that the
values the assembler assigns to symbols and labels, such as PRBUF and
START, are listed in a table at the end of the assembly listing and, in the
case of symbols, at the start of the line on which they are defined.

The next line of the program, (LD DE,MSG), causes the three byte
instruction 'load the register pair DE with the address of the label MSG'
to be assembled (01 09 01). Notice that the second and third bytes which
represent the address of MSG (109 hex) are stored in reverse order. This
is a consequence of the way the Z80 processor deals with 16-bit quantities:
such quantities are stored with the low-order byte first, then the high-
order byte.

The rest of the program consists of the CALL instruction in line 14 (again
using a 16-bit address) and finally the RET instruction in line 15. Taken
as a whole, the program loads the C register with the function code for
CP/M to print the message whose address is in DE, calls the operating
system at address 5 to perform the function, and finally returns to where
it was called from. In this example the RET instruction returns control to
CP/M without reloading it.

Take extreme care in using the stack and then attempting to return from a
subroutine to an address stored on it. In any non-trivial program a better
technique is to save the original stack pointer in memory and to load the
stack pointer with the top of your own stack area. The stack should have
at least 64 bytes of free space more than that required within your code
and more still if EMT's and escape sequences are to be used.

Program Construction and Layout

Example:
START : LD (SYSTEM.STACK.POINTER),SP ;Preserve System
LD SP,TOP.MY.STACK ;jStack Pointer
« User Code
EXIT: LD SP, (SYSTEM.STACK.POINTER) ;Restore System
RET iStack Pointer
STACK: DEFS My requirements + 64 ;iPreserve enough
;Stack Space
TOP .MY.STACK:

END

At the end of your program you can either perform a jump (JP 0) to address
zero or restore the original system stack pointer and return to the CCP.
The problems caused by overflow, i.e. using more stack than is available,
are often very intermittent and difficult to track downe. Hence the
importance of reserving a large enough stack cannot be over-emphasised.

The instructions DEFM and DEFB in lines 17 to 19 of the example program
generate data rather than Z80 machine code instructions. DEFM (define
message) generates an ASCII code byte for each character of its argument
string. Only the first four bytes are shown on the listing but you can
verify from the address of the next line that all the characters between
the quotes have been processed. DEFB (define byte) generates a byte for
each of its arguments, multiple arguments being separated by commas. Thus
line 19 assembles to 0D 0A 24, corresponding to the values of the symbols
CR and LF and the ASCII code for the dollar character. (The BDOS print
function expects a dollar character to terminate the message). Note that
to the processor these data bytes are indistinguishable from the executable
code produced by the assembly of opcodes.

Lines 5 to 8 define the symbols used in the program. Note their form:
symbol EQU value
and in particular that there is no colon after the symbol name, as in:

PRBUF EQU 9

The value which is to be assigned to the symbol is often a number, although
it can also be an expression and may contain other symbols. Numbers start
with a digit. If the number is in hexadecimal form (base 16), this is
indicated by following it with 'H', as in:

CR EQU ODH ;Equivalent to 13 decimal

The ORG statement (line 10) sets the first address of the program (the
program 'origin') to its argument, 100 hex. The END statement (line 21)
marks the end of the program. The END statement may also include a label
("START' in the example program). Some programs, such as DDT, use the
label to specify the object code execution start address.

Program Construction and Layout

The instruction mnemonics in the program can be divided into those which
produce executable code (280 instructions), referred to as opcodes, and
those which generate data or tell the assembler what to do, which are
called pseudo-opcodes. In fact, the only statement in DEMO which neither
contains an operator or pseudo-opcode, nor consists solely of a blank line
or comment, is line 1. Lines such as this, which start with an asterisk,
are called assembler directives. The directive *H (*HEADING) supplies a
running title for the listing, and in fact most of the ZASM directives
control some aspect of how the listing is produced (see Chapter 7).

Program layout

ZASM permits a free-format organization of the source program, so it is
worth establishing a convention and keeping to it. It is relatively easy
to lay out an assembly language program in a way which is clear and
readable even when returning to the program after a long period. Two
conventions will be suggested. The first, which is that used for DEMO, is
to separate the label, operator, and argument with TAB characters, and the
argument and comment with two tab characters unless the argument is longer
than eight characters. (If your keyboard has no TAB key, a tab can usually
be generated by typing CTRL/I). Thus, line 12 of DEMO could have been
keyed in as:

START: LD C,PRBUF ;Print buf function

where stands for the CTRL/I key combination. This convention is
particularly suitable if you have a printer or 80-column screen. Where
listings must often be viewed on the console, you may prefer the shorter
lines which result from replacing the TAB that follows the operator by a
space, and keying only one TAB before the comment (although in this case
listings containing labels of more than 6 characters are extremely untidy).

The purpose of either convention is to line up the various fields of each
statement. The labels stand out clearly, as do the comments, and the code
can be followed in a logical way.

The proposed behaviour of a program should be adequately described by means
of comments. Even a well-written assembly language program can be somewhat
obscure, especially if the algorithm is complex, so comment-free programs
are almost impossible to follow. However, comments should be meaningful.
For example, the comment in:

SCF iSet carry flag
adds nothing useful and obscures any meaningful comments, whereas:

SCF iSignal an error

says what setting the carry flag actually means. It is certainly not
necessary to include a comment on every line.

ZASM Pseudo-opcodes

CHAPTER 4

ZASM PSEUDO-OPCODES

This section describes all of the pseudo-opcodes that ZASM recognizes,
although some, those concerned with relocation and macros, are given only
very brief mention, with full explanations to be found in chapters 5 and 6
respectively. The use of pseud-ops in the definition of data and when
reserving storage space is described at the end of this section.

Items enclosed in angle brackets in this text (e.g. <expression>, <symbol>)
represent variable quantities. Items enclosed in square brackets represent
optional parameters (see DEFB). Most of these items are defined in chapter
2, although those concerned with relocation are described in chapter 5.

ASEG ASEG

ASEG sets the location counter to the absolute memory segment. See
chapter 5 for details.

COM COoM

COM indicates that the output file is to be generated in absolute machine
readable code, instead of HEX digits. It should appear before any code
is generated. An origin of at least 100H should be specified and the
code should never go backwards in origin, otherwise an incorrect COM file
could be generated and a >0 error will result.

Sections where no code is generated but the assembly program counter is
advanced by, for example, DEFSs and ORGs, will be filled with zeros,
except for DEFSs at the end of the program which will not be filled.

COMMON COMMON / [<block name>]/

COMMON sets the location counter to the specified COMMON block. See
chapter 5 for details.

COND COND <expression>

COND starts a conditional assembly block. The expression is evaluated to
yield a truth value (True<>0, False=0) If the expression is false,
assembly is suspended. Assembly is resumed when either an ELSE or ENDC
pseudo-opcode is encountered. If the expression is true, assembly
continues, but an ELSE will cause the suspension of assembly until the
matching ENDC. ENDC terminates the conditional segment. The expression
must be defined before it is used and must not contain any forward
references.

ZASM Pseudo-opcodes

While assembly is suspended ZASM makes no checks with regard to syntax,
and the skipped text need not form a legal block of assembly language.
There may be at most one ELSE at any given conditional level. CONDs may
be nested, to a maximum depth of 10 levels.

CSEG CSEG

CSEG sets the location counter to the code-relocatable memory segment.
See chapter 5 for details.

DEFB DEFB <expression>[,<expression>...]

The arguments to DEFB (define byte) are expressions, which must be
absolute and lie in the range -128 to 255. DEFB stores the values in
successive memory locations. Adjacent commas result in a zero byte being
generated, while a trailing comma is ignored. Examples are:

DEFB -1 ;Generates FF hex
DEFB 3,4,,5, ;:Generates 03 04 00 05

The rather curious convention concerning stray commas arises from a
historical accident involving automatically-generated programs. It is
suggested that hand-written programs should ignore this feature.

DEFL <symbol> DEFL <expression>

DEFL is similar to EQU (g.v.) except that no error is generated if the
symbol is later redefined. This pseudo-opcode is sometimes called SET in
other assemblers. The := pseudo-opcode is synonymous with DEFL.

DEFM DEFM <string>

DEFM generates a sequence of bytes, similar to a DEFB, containing the
characters of the string.

DEFS DEFS <expression>

DEFS reserves an area of memory. The value of the argument (which must
be absolute) is added to the current location counter, reserving that
many bytes of storage. The reserved storage is not initialized in any
way unless the COM pseudo-opcode has been executed, in which case null
bytes are written to the output file.

Note that the expression MUST be defined before it is used (and must not
contain any forward references), or any subsequent labels will cause
phase errors. A phase error occours when a label or variable has
different values on each of the two passes made through the source code
by the ZASM assembler when generating the object code.

ZASM Pseudo-opcodes

DEFW DEFW <expression>[,<expression>...]

DEFW is similar to DEFB, except that it deals with 16-bit values, not 8-
bit values. DEFW stores the values of the expressions, which are its
arguments, in successive memory locations. Each word is stored with the
low-order byte first.

DSEG DSEG

DSEG sets the location counter to the data-relocatable memory segment.
See chapter 5 for details.

ELSE ELSE

ELSE resets the conditional assembly state. See COND.

END END [<expression>]
The END statement specifies the end of the program. The argument, or
zero if it is absent, is used as the start address for the program.

ENDC ENDC

ENDC terminates a conditional assembly segment. See COND.

ENDM ENDM

ENDM terminates a macro definition. See chapter 6 for details.

EQU <symbol> EQU <expression>

EQU assigns to the symbol on the left of the EQU the value of the
expression on the right. The expression can be of any mode, (absolute,
code relocatable, etc) and the symbol takes that mode. The symbol may
not subsequently be redefined to another value or mode. The trivial
exception to this rule is that it is legal to 'redefine' it if the new
value and mode are the same as the old.

The symbol "=" may be used instead of EQU.

EXTERNAL EXTERNAL <symbol>[,<symbol>...]

EXTERNAL tells the assembler that the specified symbols are defined in
some other module (file) by the GLOBAL pseudo-opcode. The linker will
patch in the addresses concerned. An external symbol may not be
redefined (except as external).

ZASM Pseudo-opcodes

GLOBAL GLOBAL <symbol>[,<symbol>...]

A symbol defined by GLOBAL is made available to other program modules at
link time, to be used as EXTERNALs. GLOBAL symbols may be given values
via EQU etc. or by their use as labels. See chapter 5 for details.

LIBRARY LIBRARY <symbol>[,<symbol>...]

The LIBRARY pseudo-opcode generates signals to the linker to search the
specified libraries for definitions of undefined global symbols. For
example, the statement:

LIBRARY GLIB

causes the linker to search the file GLIB.REL for global symbol
definitions. See chapter 5 for details.

MACRO <symbol> MACRO <argument list>
MACRO <symbol> <any list>

MACRO defines a macro. See chapter 6 for details.

NAME NAME <symbol>

The NAME pseudo-operator sets the name of the current module, for use by
the linking loader. By default the first six characters only are used,
and if unspecified will be the first six characters of the file name.

ORG ORG <expression>

ORG is used to set the program origin. The current program counter is
set to the value of the expression. The expression must be absolute or
of the same mode as the current program counter. The expression must be
defined before use and must not contain any forward references.

QUERY <symbol> QUERY <string>

QUERY is used to assign a value to the symbol from the keyboard. The
string is displayed followed by a colon. 2ASM then waits for an
expression to be entered from the keyboard terminated by a carriage-
return character. The expression is evaluated and, if legal, assigned to
the symbol. If an invalid expression is entered, the prompt:

Bad input, try again:
is given and another expression should be entered. The statement is

skipped if the symbol has already been defined, and the symbol may not be
redefined in a subsequent EQU or DEFL statement.

ZASM Pseudo-opcodes

RADB RADB

RADB sets the default radix to binary. Any number subsequently 1
encountered not ending with an explicit radix indicator (B,0,0,D, ., or
H) is treated as a binary constant. The default radix is set to decimal
at the start of each pass.

RADD RADD

RADD sets the default radix to decimal. Any number subsequently :
encountered not ending with an explicit radix indicator (B,0,Q,D, . or H) 3
is treated as a decimal constant. The default radix is set to decimal at
the start of each pass.

RADO RADO
RADO sets the default radix to octal. Any number subsequently
encountered not ending with an explicit radix indicator (B,0,Q,D, ., or
H) is treated as an octal constant. The default radix is set to decimal
at the start of each pass.

RADH RADH

RADH sets the default radix to hexadecimal (Base Sixteen). Any number
subsequently encountered not ending with one of the explicit radix
indicators O, Q or H is treated as a hexadecimal constant. Any number
encountered ending with B or D is treated, in its entirety, as a
hexadecimal constant when RADH is in effect. The default radix is set to
decimal at the start of each pass.

Note

When RADH is in effect the letters B or D at the end of a number are
treated as part of the number and not as trailing redix indicators.

(unlike previous versions of ZASM). Considerable care should be taken
when using RADH.

ZASM Pseudo-opcodes

Data Definition

Data may be defined by the pseudo-ops DEFB, DEFW and DEFM which store 8
bit, 16 bit and character string quantities respectively:

Byte(s) Assembled Pseudo-op Expression

01 DEFB 1
0002 DEFW 0200H
53545249 DEFM ' STRING'

DEFB and DEFW (but not DEFM) may define several constants, if they are
separated by commas:

01020304 DEFB 1, 2, 3, 4
04000300 DEFW 4, 3, 2, 1

Strings defined by DEFM may contain the ‘escape’ character UPARROW (not the

same as ASCII ESC). This causes the most significant bit of the next
character to be set:

411 DEFM ‘aja’

Exceptions:
1) Two uparrows assemble an uparrow:
SE DEFM ity
2) Uparrow single quote assembles a single quote:

27 DEFM e

An ASCII CHARACTER CONSTANT consists of a character string which assembles
to a single byte. It may contain the uparrow construction:

41C15E27 DEFB A S Y N

ZASM Pseudo-opcodes

Free Format Data Definition

ZASM also allows data to be defined in FREE FORMAT. If the first non-blank
character of a statement is one of:

0 -9 Digit

Plus

Minus

Single Quote
Dollar

Hash

Left Parenthesis

+

~FH» - |

the statement is considered to be defining data and will be assembled as
though the character was preceded by DEFB, DEFW or DEFM. Hash (#) signals
that the next constant is a 16 bit one and single quote (') that it is a
character string. Several such quantities may appear in one statement and
their types may be mixed:

01 1 ;Assemble in 8 bits

0100 #1 ;iAssemble in 16 bits

31 e ;Assemble ASCII constant

01010031 1,#1,'1' ;Do all three

—— #$;jCurrent Address (----) as word
000A= TEN EQU OAH ;i Hexadecimal Constant

0A +TEN ;Assemble Symbolic Byte

0a (TEN) > ;Ditto

The last two forms are necessary because free format cannot start with a
letter. It may continue with one however:

OAOA 10, TEN

Free format is often useful for table generation.

Reserving Storage

Storage space is reserved by the pseudo-op DEFS:

Address Pseudo-op Expression
0056 DEFS 100H
0156 NOP

Note

DEFS and ORG may be followed by a symbol or symbolic expression. However
this must be fully defined before the DEFS or ORG is encountered on pass 1.
If not (and it is subsequently defined), the assembly program counter will

ZASM Pseudo-opcodes

take on a different value for pass 1 and pass 2 and this will result in
incorrect assembly, indicated by P errors for any subsequent labels. If
the symbol or expression remains undefined during pass 2 it will give a U
error. Error Codes are described in Appendix B.

Program Relocation

CHAPTER 5

PROGRAM RELOCATION

Relocation is the name given to the process whereby the exact address of a
section of assembly language code or data is deferred to the so-called
linking phase. The benefit of this approach is that a large assembly
language program can be divided into modules, each relatively autonomous.
This reduces the complexity of the program very substantially. The number
of errors should therefore be reduced.

A separate program, variously called a linker, linkage editor, or loader

(and a variety of other names), is used to convert the output of the
assembler (.REL files) to executable (.COM) files.

Simple Relocation

Simple relocation is conceptually straightforward. Contained within a
typical assembly language program are various addresses, which must be
changed if the program origin is changed. For example, the code:

ORG 0
LAB: .
JP LAB

generates the code C3 00 00 for the JP instruction, but moving the origin
to 2345H changes the code to C3 45 23. If the assembler is generating
relocatable code, it flags every address which needs altering. The example
therefore generates the code:

C3 (flag) 00 00

where (flag) indicates that the following address should have the program
origin added to it. The output is now completely indepehdent of the
program origin. The linker makes a note of the program origin and adds
that to any flagged address.

Note that the use of relative jumps can reduce substantially the number of
such flagged addresses. In the limit there may be none, and such a program
is described as position-independent. On many computers it is easy to
write position-independent code, but the architecture of the 2Z80 makes it
hard to write and often much less efficient than position-dependent code.

By default, ZASM generates absolute (non-relocatable) code. It can be made
to generate relocatable code by specifying the pseudo-opcode:

CSEG

CSEG is a contraction of 'code-relocatable segment'. There are other types

Program Relocation

of relocatable segment, which we'll cover later. It is possible to convert
back to absolute by the ‘'absolute segment' pseudo-opcode:

ASEG

Note that the pseudo-opcode COM cannot be used in a program that contains a
relocatable segment.

So far, we haven't actually made any progress, as all that we have done is
complicate the assembler. However, there is a big advantage. Suppose that
we have several modules each assembled with an origin of zero. The linker
can merge these modules, adjusting the origin of each one to be just after
the end of its predecessor. By this technigque, independent sections of
program can be loaded together, and a change means only that one section
needs to be reassembled and then the program relinked. Under CP/M, the
first module is normally loaded at 100 hex.

Globals and Externals

The simple relocation scheme outlined above is not tremendously useful,
since the individual modules are completely separate, with no intermodule
communication. The way round this is to specify in each module that
certain symbols are GLOBAL or EXTERNAL. A global symbol is an otherwise
normal symbol (which must be defined at some time during pass 1) which is
flagged by the GLOBAL statement:

GLOBAL symbol [,symbol...]

ZASM outputs information to the object code file which includes the first
six characters of the name of the symbol, and its value (which may be
relocatable). This information is made available to any module which
requires it by saying:

EXTERNAL symbol [,symbol...]

in that module. The symbols must not be otherwise defined in that module,
but must be defined by a GLOBAL statement in some other module.

For example, suppose there exists in one module a routine called MYSUB
which other modules need to access. We can say:

GLOBAL MYSUB

MYSUB: .
RET
to define it, and :
EXTERNAL MYSUB

CALL MYSUB

to access it.

Program Relocation

Incidentally all relocating assemblers have some technique available which
amounts to the same thing as the GLOBAL and EXTERNAL pseudo-opcodes
described above. Unfortunately, there is little agreement as to what to
call them, and one particularly widespread convention is to use PUBLIC for
what we call GLOBAL, and GLOBAL for our EXTERNAL.

The Data-Relocatable Segment

Besides the code-relocatable and absolute segments described above, ZASM
provides a data-relocatable segment. This is invoked by:

DSEG

and behaves just like CSEG in all respects. However, the advantage of
having a separate segment in which to put data, rather than code, is that
the linker can be directed to separate them. This is useful when the code

is to be placed in read-only memory (ROM) and the data in read/write memory
(RAM) .

ZASM maintains completely independent program counters for the code and
data-relocatable segments (and indeed for the absolute segment). If you
leave a segment, and later return to it, the relevant code program counter
will remain unchanged and further code will join on to the end.

Common Segments

The other type of segment allowed by ZASM is the COMMON segment, which, as
its name implies, owes much to FORTRAN. It is, nevertheless, useful in
assembly language programs. A common segment is entered by the statement:

COMMON /symbol/ or COMMON //
and is left by another segment-defining pseudo-opcode.

The latter form (the slashes are mandatory) is called 'blank common.' The
symbol (which, as in FORTRAN, is limited in length to six characters) is
used to define which common segment to use. This means that COMMON is not
just one segment, but many, each identified by name. (ZASM imposes the
restriction that there can be no more than 255 COMMON segments in any
module. However, in practice, it is very rare to use more than about two.)
A major difference between COMMON and other segments is that each
occurrence of the word COMMON sets the COMMON program counter to zero, and
so multiple references to the same COMMON block overlay each other.

COMMON blocks are available freely to every module which references them.
However, wunlike EXTERNAL/GLOBAL, the individual variables within a block

are accessed by their offsets from the base of the block, rather than by
name. '

An example might clarify this point:

Program Relocation

Suppose that in module A we define:

COMMON // ;Blank COMMON
WORD : DEFS 2 ;Leave space for a 16-bit number
BYTE: DEFS 1 ;Only 8 bits here
and in module B we define:
COMMON // ;Blank COMMON
B1l: DEFS 1 ;First byte
B2: DEFS 1 ;Second byte
B3: DEFS 1 ;Third byte

In module A the blank COMMON area is divided into two areas, accessed by
WORD and BYTE respectively. In module B, it is divided into three,
accessed by B1, B2, and B3. B1 and B2 can be used to access the same
storage as WORD, and B3 the same byte as BYTE. The possibilities for
confusion with this type of construct are enormous. However, used
carefully, COMMON is an exceedingly useful technique.

A given COMMON block need not be defined to be the same size in each of the
modules which define it. However, linkers generally impose the restriction
that the second and subsequent references to a COMMON block must not be to
blocks larger than the first (defining) reference. Thus, the module with
the largest size definition for each COMMON block must be linked first.

Expression Restrictions

There are several restrictions imposed on expressions which contain
relocatable quantities. These are largely due to limitations in the
linker. However, in practice, these restrictions largely forbid operations
which are very rare (e.g. multiplying two labels together). Attempts to
use a forbidden expression result in an E error.

An absolute quantity can be added to a quantity of any mode, the mode of
the result being the mode of the non-absolute operand.

An absolute quantity can be subtracted from a quantity of any mode, and the
mode of the result is the mode of that operand. Otherwise, the modes of
both operands must be the same, and the result is absolute. Subtraction of
COMMON items is valid only where both operands are in the same COMMON
block, and an external variable may only be subtracted from itself or from
a variable whose value is the sum of that external and an absolute.

For any other operator, both operands must be absolute, and the mode of the
result absolute.

Program Relocation

The linker may add to any address a single offset, if that address is
relocatable. Denoting absolute values by A, A', and A'" and relocation
offsets by r and r', an expression may therefore deliver either:

A
or:
A+r

Subtraction of relocatable quantities therefore amounts to
(A+r) - (A" +xr)=>(A-A") + (r -r) =>A-A'
if they are in the same segment, but
(A +r) - (A' +r') => (A~-A') + (r - r') => error
if they are in different segments. The limitation to one relocation offset
applies to sub-expressions as well as to the entire expression, so that for
example:

(A+r) + (A" +) - (A'"' + 1)

gives an error, even though the result is A + A' + A'' + r, because after
the first addition the result is not representable.

Note that it is not possible in ZASM to compare two relocatable quantities
directly, even where they are in the same segment. The quantities must be
subtracted and the result compared with zero.

Libraries

A library is a file which contains a number of assembled 'modules’. Each
module typically contains some GLOBAL symbols. A linker can search a
library for these definitions, and include relevant modules with the
executable code. The LIBRARY pseudo-opcode:

LIBRARY libfile[,libfile...]

specifies one or more library files. The linker will search all of the
specified libary files, in order, for definitions of undefined EXTERNAL
symbols. It is normally used when the file makes reference to the contents
of the library and reduces the amount of typing necessary to produce an
executable file from the relocatable binary file.

A typical linker program is the one known as L80, provided by RML with the
FORTRAN compiler.

Macros

CHAPTER 6

MACROS

The macro (from the Greek for "large") is a very powerful extension to
assembly language - or indeed to a high-level language. In many ways,
macros are used in a similar way to subroutine calls, in that both can be
regarded as adding to the instruction set of the computer. However, there
is one important difference: macros work by textual substitution, whereas
a jump to a subroutine implies a dynamic linkage. Macros tend to be faster
and more flexible, being assembled at each point they are invoked, whereas
subroutines offer savings in program size, since they are assembled in the
place they are defined.

For beginners, the macro presents a degree of complexity which can be
confusing. It is therefore suggested that novices defer reading this
chapter until they have a thorough grasp of the rest of this manual.
However the experienced user will find the added benefits of macros an
invaluable aid to program simplification and readability.

One of the problems with macros (or at least with descriptions of macros)
is that realistic examples tend to use many of the features of macros and
therefore tend to be somewhat complicated. This description attempts to
explain macros in an incremental manner, covering the simplest features
first, and going on to more complex matters later. This approach has the
drawback that the examples tend to be unrealistic and useless in the early
part of the chapter, and it is only towards the end that macros of any real
benefit start to appear.

Parameter-less Macros

The simplest type of macro has no parameters. It is defined by a sequence
of statements such as:

mymac MACRO

ENDM

where the dots represent any piece of text (which need not form valid
assembly code, although of course the final product must be valid to avoid
errors), and mymac is the name of the macro. The code between the MACRO
and ENDM statements is known as the macro body. The term 'replacement
text' is also occasionally used, although in this document it is given
slightly different meaning which we will come to later.

The body of the macro is inserted into the source stream more or less
unmodified. However, any macro invocations within the macro body are

Macros

expanded. The advantage of this scheme, as opposed simply to copying the
macro body with the aid of a text editor, is that a macro is much easier to
maintain, in that a change in a single place in the source file will change
all occurrences of the macro body uniformly. Attempting to change multiple

copies of a single piece of source text is extremely error-prone, even with
a powerful text editor.

The use of a macro can also make the program much easier to follow, as the
messy details of the macro body are hidden, and do not clutter up the main
program. Injudicious use of macros can serve to confuse, but in many cases
the macro can clarify assembly language routines.

Parameter Passing

The simple macro scheme outlined in the previous section lacks the power
necessary to perform even moderately complicated activities. The addition
of parameters to macros greatly enhances their utility. A macro with
parameters is defined by:

mymac MACRO dum1,dum2, ... ,dumn

.

ENDM

where duml, dum2, ..., dumn are the n 'dummy parameters' to the macro.
Each dummy parameter takes the form of a symbol which should be distinct
from the others, but may clash with built-in names such as register names
if it is desired that all occurrences of that name be substituted by
something else. An invocation of the above macro becomes:

mymac actl,act2,...,actn

where act1, act2, ..., actn are the ‘actual parameters'. Each actual
parameter takes the form of an arbitrary text string, separated from the
others by commas or spaces. To pass a text string containing commas,
spaces or characters that must not be folded to upper case, it can be
enclosed by braces ({ }) causing the enclosed string to be passed "as is".

Note that although a quoted string passed as a parameter will not be
folded, strings within the macro body may be, depending on the setting of
*U at the time of the macro definition.

When the macro body is inserted into the source stream, occurrences of each
dummy parameter within the body are replaced by the corresponding actual
parameter. If there are more actual parameters than dummies, the extra
ones are ignored. If there are more dummies than actual parameters, the
extra dummies are replaced by null strings, i.e. by nothing. The modified
macro body then becomes the 'replacement text'.

For example, it is possible to emulate the EMT instruction with the aid of

Macros

an appropriate macro. We may define a macro EMT by:

EMT MACRO CODE
RST 30H ;Execute a restart instruction
DEFB CODE ;The EMT code
ENDM

Suppose we call this by:
EMT KBDWF

Wherever the symbol CODE appears in the macro body, the symbol KBDWF is
substituted. Thus, the replacement text becomes:

RST 30H ;Execute a restart instruction
DEFB KBDWF ;The EMT code

It is important to realise that it is only when macro substitution is
complete that any expression evaluation takes place. All macro
substitution is entirely at the textual level. Thus, if KBDWF in the above
example has the value 34, the replacement text does not contain the line:

DEFB 34

but still refers to KBDWF.

Concatenation

Normally, substitution of macro parameters only occurs when a complete
symbol matches the dummy parameter. Thus, the macro:

labgen MACRO num
labnum:
ENDM
which might be intended to generate a label of the form lab3, does not do
so; it generates 'labnum': instead. The concatenation operator '&' can be
used to avoid this. If we redefine labgen as:
labgen MACRO num
lab&num:
ENDM
then all is well, and a call to labgen of the form:
labgen 3
now generates:

lab3:

in the desired manner.

Macros

Parameter Value Passing

The % operator can be used in front of an actual parameter to cause that

parameter to be evaluated before substitution into the macro body.
example, suppose we invoke the above labgen macro by:

labno EQU 3
labgen 1labno

This has the replacement text:
lablabno:

whereas:

labno EQU 3
labgen %labno

is replaced by:

lab3:

For

It is therefore possible to write the following pair of macros to generate
a new label every time one of them is called, once the label number (labno)

has been initialized using := or DEFL

nextlab MACRO
labgen %labno
labno = labno + 1
ENDM
labgen MACRO num
lab&num:
ENDM

Further Examples

One of the major uses of macros is to confine details of the program, such
as the representation of data, into a single place within the program

listing (subroutines can also perform this function).
be expensive in terms of the space required.

Invoking macros can

A very useful trick to overcome this is to redefine a macro within the

macro’s invocation.

Consider the macro:

error MACRO errnum ;Define error
14 a,'0'+errnum ;Get the error number in A
call errout ;Print the error number
jr errend jJump round the output routine

Macros

errout: emt outc ;Print the character
14 a,CR ;Print a carriage-return
emt outc
ret
errend:
error MACRO err ;Redefine the macro
14 a, '0O'+err ;jJust get the error
call errout ;and print it
ENDM
ENDM

This macro defines and uses a short subroutine (labelled errout) which
simply prints out a number on the screen, followed by a carriage-return.
It also redefines itself so that further invocations simply call errout,
rather than bring in the entire routine. Thus, error can be called at any
time, at a cost of five bytes per call. Coding the macro in line each time
would cost eight bytes per call.

An example which illustrates most of the points in this chapter follows, in
which a set of macros are used to generate code, and labels, to simulate
the high level construct IF...THEN...[ELSE...]ENDIF.

A number of lines in this example begin with an asterisk. These form
commands known as "directives", and are described in Chapter 7.

*H 'IF' macro definitions

;IFNOT« .+« [IFTRUE....]ENDIF

IFNOT Generate new label number
Update nesting level

Code jump to block end if ‘'cc' not true
Store jump label

IFNOT MACRO cc

*L OFF

nxtlab := nxtlab+1

iflevel := iflevel+1
JUMP snxtlab,{cc,}
DESTS siflevel

*L, ON

ENDM

Macros

IFTRUE Generate new label number
Code jump to ENDIF

P)

Store jump label

IFTRUE MACRO

*L, OFF

nxtlab := nxtlab+1
JUMP $nxtlab
DESTLAB $iflevel
DESTS tiflevel

*L ON

ENDM

Code destination label forIFNOT

;ENDIF Code destination for IFTRUE or IFNOT
H

Update nesting level

ENDIF MACRO

*L OFF

DESTLAB $iflevel
iflevel := iflevel-1
*L, ON

ENDM

JUMP MACRO labnum, optcc
JR optcc iflab&labnum
ENDM

DESTS MACRO level
dest&level := nxtlab
ENDM

DESTLAB MACRO level
LABGEN %dest&level
ENDM

LABGEN MACRO label
iflab&label:
ENDM

nxtlab DEFL 0
iflevel DEFL 0

i
H

Initial label number
Initial if nesting level

Macros

IFNOT is used at the start of the construct, causing the assembly of a jump
to the end of the subsequent block (marked by IFTRUE, if present, or else
by ENDIF) when the condition is true. If the condition is false the block
will be executed up to the occurrence of the matching IFTRUE, when
execution passes to ENDIF.

The use of these constructs is illustrated in the following program
segment:

*LM OFF
OR A
IFNOT Z
LD B,-1
LD C, (HL)
IFTRUE
LD B,0
IFNOT C
LD c,0
ENDIF
ENDIF
*LM ON

which, expanding the macros by hand, would be written thus:

OR A
JR Z,IFLAB1
LD B,m-'l
LD C, (HL)
JR IFLAB2
IFLAB1: LD B,0
JR C,IFLAB3
LD c,0
IFLAB3:
IFLAB2:

and that, to the eyes of those more used to high level languages, is not as
easy to read.

Directives

CHAPTER 7

DIRECTIVES

Directives are mostly concerned with the layout of an assembly listing.
ZASM supports a number of directives identified by an asterisk (*) as the
first non-blank item in a statment:

*INCLUDE filespec
*REQUEST ON/OFF (off)
*HEADING string
*FORMFEED ON/OFF (on)
*EJECT

*LIST ON/OFF (on)
*NUMBERING ON/OFF
*UPPER.CASE ON/OFF (on)
*WIDTH

*XREF

*SYMBOLS ON/OFF (on)
*PRINT

All of these may be abbreviated to their initial letter - thus *E and
*EJECT have the same action. Certain directives in the above list may be
followed by either ON or OFF. If the argument is omitted, the action is
the same as ON. The argument in parenthesis is the default setting.

*INCLUDE filespec

The *INCLUDE directive allows ZASM input to be taken from an additional
source file, where 'filespec' is a valid unambiguous CP/M file
specification. Disc units A: to P: are allowed: if omitted, the disc

defaults to the currently logged in disk. If the secondary filename is
omitted, '.ZSM' is used.

Examples:
*I B:TABLES.ZSM
*I TABLES
*I A:SYSTEM.DEF
If logged in to disc B: the first two examples have the same action.

Note If there is no carriage return at the end of an included file
the next line of the file into which it has been included will
become a continuation of its last line at assembly time and
will therefore often appear to be ignored

*REQUEST

The *REQUEST directive causes the assembler to pause, waiting for the
user to press a key, after it has reported each error on the console.

Directives

*HEADING string

The *HEADING directive causes 'string' to appear on the title line of
each page. The first *H directive turns on paging and line numbering and
sets the page number to 1. Subsequent *H's change the title string and
cause a page throw. If used, *H is usually the first statement of a
program, but is often followed by other *H's. The string is optional and
is truncated to 28 characters.

*FORMFEED OFF
The *FORMFEED OFF directive informs ZASM that hardware formfeeds are not
available on the listing device. If you have a 'Teletype' or similar
device, *FORMFEED OFF should be the first statement of your program.

*FORMFEED [ON]

The *FORMFEED [ON] directive restores the use of hardware formfeeds
(default setting).

*EJECT
The *EJECT directive causes a page throw. This directive is only active
if there has been at least one *H. A formfeed character in the source
file has a similar action.

*LIST OFF

The *LIST OFF directive turns off the listing. The statement containing
*L OFF is listed, but the subsequent statements are not.

*LIST [ON]

The *LIST ON directive restores listing after *L OFF (the default setting
is ON).
Note *L, OFF/ON may be nested.

Global List Control

It is possible to disable the effect of the normal *L directive by using
a Global listing directive.

*L+ turns on the Global listing facility
*L- turns off the Global listing facility

*L+ and *L- take the argument ON or OFF, which turns the listing on or
off at that point.

It is not possible to nest global listing directives. All normal *L
directives are ignored when the global listing facility is active.

Directives

Listing of Macros and Conditionals

It is possible to prevent the expanded code for a macro, or code
conditioned out, from being output to the listing.

*LM ON indicates that macro expansions are to be listed
*LM OFF indicates that macro expansions are not to be listed

The default is *LM ON. The macro call is listed, and the line numbers
are advanced by the correct amount.

*LC ON indicates that code conditioned out is to be listed
*LC OFF indicates that code conditioned out is not to be listed

The default is *LC ON. If *LC OFF is active, only the COND and ENDC
statements are listed, but the line numbers are advanced as if the lines
were listed.

*NUMBERING OFF

The *NUMBERING OFF directive turns off the line number field of the
source listing. Line numbering is off by default but turned on by *H .

*NUMBERING [ON]

The *NUMBERING [ON] directive starts or restarts line numbering.

*UPPERCASE

The *UPPERCASE directive takes a single ON or OFF argument which enables
or disables conversion of lower case (small) letters to upper case
(capitals) before further assembly. Such conversion, however, does not
apply to string or character constants or within comments, except those
within the body of a macro. Case conversion is enabled by default,
allowing programs to be entered in lower case.

*WIDTH

*WIDTH takes a numeric argument which controls the width of the program
listing and symbol table. The numeric argument must lie in the range 21
to 132; if it does not, it is forced to the nearer limit. The width is
counted from the left-most character position. Any character beyond the
limit is not listed. The width is initially 132. The number of columns
used in the symbol table (if enabled) is controlled by the WIDTH
directive - the number of columns will be the largest number that will
fit within the specified width.

Directives

CROSS-REFERENCE

*XREF takes a single ON or OFF argument which enables or disables cross-
referencing. If cross-referencing is enabled, then ZASM makes a note of
the line numbers of the definition of, and references to, each symbol.
The symbol table output at the end of the listing will show this
information, in addition to the value and mode of the symbol. The cross-
reference listing does not include local labels. N.B. If *X ON is to be
used it must precede the first label or symbol definition.

Occasionally it is useful to have all the references in a cross reference
table in HEX, for example when there are more than 9999 lines in the .PRN
file.

*XH indicates that the cross reference listing is to be in HEX
*XN indicates that the listing should show line numbers

The default is line numbers.
Warning It is not advisable to mix line numbers and HEX addresses in
the same cross reference listing as it may be impossible to

distinguish between them.

In a HEX cross reference listing equates are shown as having a reference
to the next instruction in the file.

*SYMBOLS ON

The *SYMBOLS ON directive restores the User Symbol table listing (default
setting).

*PRINT
*P is used to print messages or variables during assembly.

The message is always prefixed by an indication of which pass of the
assembler it is from, for example:

Pass 1 : This is a message displayed on the console

*P message - prints 'message' on both passes of the assembler
*P1 message - prints 'message' on pass 1 only
*P2 message - prints 'message' on pass 2 only

A maximum of 127 characters can be printed with any one message.

*P= exp - prints out 'exp' followed by '=' and the value of the
expression, which can be any normal expression acceptable
by ZASM. Values are always output as a 4-digit HEX
number, and are only output on pass 2, for example:

Pass 2 : $ = 5435

Appendix A

APPENDIX A

INSTRUCTION MNEMONICS

The mnemonic instruction set implemented by ZASM is the same as that
defined by MOSTEK (see Mostek Z80 Programming Manual) except for:

The 8 bit Arithmetic Instructions (ADD, ADC, SUB, SBC, AND, XOR, OR and
CP) can be presented in either the MOSTEK or ZILOG forms. For example,
ADD A,7 and ADD 7 are acceptable forms.

Relative Jumps (DJNZ, JR) accept as an argument the branching address and
not the displacement.

The IM0O, IM1 and IM2 instructions must not include a space between the M
and the digit.

Note that the decrement and jump non zero instruction must be written in
the form "DINZ label” with at least one space.

The exchange accumulator instruction EX AF,AF' need not include the
terminal prime in ZASM. Note that ZASM ignores any trailing primes on a
register name. However trailing primes can be useful in a listing to
indicate the currently selected register set.

ZASM also interprets the two instructions EMT and CALR. These are pseudo
instructions implemented by the firmware. CALR is a relative call and EMT
is the EMulator Trap instruction. For details of these instructions refer
to the Firmware Reference Manual.

Two complete lists of ZASM mnemonics are given on the following pages:
a) in alphabetical order
b) in numerical order

Note that in these lists the following values are assumed:
d EQU O0S5H
n EQU 20H
nn EQU 584H

and "dis" is a label with an offset of 2EH.

A third 1list, in function order, may be found in the Machine Language
Programmers Guide.

Appendix A (Alphabetical)

ADC A, (HL) 8E BIT O,L CB45 BIT 6,E CB73
ADC A,(IX+d) DDSEQ0S BIT 1,(HL) CB4E BIT 6,H CB74
ADC A,(IY+d) FDSEO5 BIT 1,(IX+d) DDCBOS54E BIT 6,L CB75
ADC A,A 8F BIT 1,(IY+d) FDCBO54E BIT 7,(HL) CB7E
ADC A,B 88 BIT 1,A CB4F BIT 7,(IX+d) DDCBO57E
ADC A,C 89 BIT 1,B CB48 BIT 7,(IY+d) FDCBO5S7E
ADC A,D 8A BIT 1,C CB49 BIT 7,A CB7F
ADC ALE 8B BIT 1,D CB4A BIT 7,B CB78
ADC A,H 8C BIT 1,E CB4B BIT 7,C CB79
ADC A,L 8D BIT 1,H CB4C BIT 7,D CB7A
ADC A,n CE20 BIT 1,L CB4D BIT 7,E CB7B
ADC HL,BC ED4A BIT 2,(HL) CB56 BIT 7,H CB7C
ADC HL,DE ED5A BIT 2,(IX+d) DDCB0556 BIT 7,L CB7D
ADC HL,HL ED6A BIT 2,(IY+d) FDCB0556 CALL nn CD8405
ADC HL,SP ED7A BIT 2,A CB57 CALL C,nn DC8405
ADD A, (HL) 86 BIT 2,B CB50 CALL M,nn FC8405
ADD A,(IX+d) DD8605 BIT 2,C CB51 CALL NC,nn D48405
ADD A,(IY+d) FD8605 BIT 2,D CB52 CALL NZ,nn C48405
ADD A,A 87 BIT 2,E CB53 CALL P,nn F48405
ADD A,B 80 BIT 2,H CB54 CALL PE,nn EC8405
ADD A,C 81 BIT 2,L CB55 CALL PO,nn E48405
ADD A,D 82 BIT 3,(HL) CBSE CALL Z,nn CC8405
ADD AL,E 83 BIT 3,(IX+d) DDCBO5SE CCF 3F

ADD A,H 84 BIT 3,(IY+d) FDCBO5SE CP (HL) BE

ADD A,L 85 BIT 3,A CB5F Ccp (IX+4d) DDBEOS
ADD A,n C620 BIT 3,B CB58 CP (IY+d) FDBEO5
ADD HL,BC 09 BIT 3,C CB59 CP A BF

ADD HL,DE 19 BIT 3,D CB5A Ccp B B8

ADD HL,HL 29 BIT 3,E CB5B CP C B9

ADD HL,SP 39 BIT 3,H CB5C CcpP D BA
ADD IX,BC DD09 BIT 3,L CB5D Ccp E BB

ADD IX,DE DD 19 BIT 4, (HL) CB66 CP H BC

ADD IX,IX DD29 BIT 4,(IX+d) DDCB0566 Cp L BD

ADD IX,SP DD39 BIT 4,(IY+d) FDCB0566 CP n FE20
ADD 1IY,BC FDO9 BIT 4,A CB67 CPD EDA9
ADD 1IY,DE FD19 BIT 4,B CB60 CPDR EDB9
ADD IY,IY FD29 BIT 4,C CB61 CPI EDA1
ADD IY,SP FD39 BIT 4,D CB62 CPIR EDB1
AND (HL) A6 BIT 4,E CB63 CPL 2F

AND (IX+d) DDA605 BIT 4,H CB64 DAA 27

AND (IY+d) FDA605 BIT 4,L CB65 DEC (HL) 35

AND A A7 BIT 5,(HL) CB6E DEC (IX+d) DD3505
AND B A0 BIT 5,(IX+d) DDCBO56E DEC (IY+d) FD3505
AND C Al BIT 5,(IY+d) FDCBOS6E DEC A 3D

AND D A2 BIT 5,A CB6F DEC B 05

AND E A3 BIT 5,B CB68 DEC BC 0B

AND H A4 BIT 5,C CB69 DEC C 0D

AND L AS BIT 5,D CB6A DEC D 15

AND n E620 BIT 5,E CB6B DEC DE 1B

BIT 0, (HL) CB46 BIT 5,H CB6C DEC E 1D

BIT 0,(IX+d) DDCB0546 BIT 5,L CB6D DEC H 25

BIT O0,(IY+d) FDCB0546 BIT 6, (HL) CB76 DEC HL 2B

BIT 0,A CB47 BIT 6,(IX+d) DDCB0576 DEC IX DD2B
BIT O0,B CB40 BIT 6,(IY+d) FDCB0576 DEC 1Y FD2B
BIT 0,C CB41 BIT 6,A CB77 DEC L 2D

BIT O0,D CB42 BIT 6,B CB70 DEC SP 3B

BIT O,E CB43 BIT 6,C CB71 DI F3

BIT O0,H CB44 BIT 6,D CB72 DINZ dis 102E

EI
EX
EX
EX
EX
EX
EXX
HALT
IM0
m1
M2
IN
IN

IN
IN
IN
IN
IN
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
IND
INDR
INI
INIR
JpP

Jp
Jp
JpP

JP
JP

JP

JP
JR
JR
JR
JR

66 %

(SP) ,HL
(Sp),IX
(SP),IyY
AF,AF'
DE, HL

A,(C)
A,(n)
B,(C)
c,(C)
D,(C)
E,(C)
H,(C)
L,(C)
(HL)
(IX+4)
(IY+d)

; ﬁ o g U QO g w o>

Iy

SP

(HL)
(IX)
(IY)

C,nn
M,nn
NC,nn
NZ,nn
P,nn
PE,nn
PO,nn
Z,nn

C,dis
NC,dis
NZ,dis
z,dis
(BC),A
(DE) ,A

E3
DDE3
FDE3
08
EB

D9

76
ED46
EDS56
EDSE
ED78
DB20
ED40
ED48
ED50
ED58
ED60
ED68
34
DD3405
FD3405
3c

04

03

oc

14

13

1c

24

23
DD23
FD23
2C

33
EDAA
EDBA
EDA2
EDB2
E9
DDE9
FDE9
C38405
DA8405
FA8405
D28405
C28405
F28405
EAB405
E28405
CAB405
182E
382E
302E
202E
282E
02

12

EEBEEEEEEEBERE

o wwwwwowmm»dddddeddp»p

~ ~

(HL) ,A
(HL) ,B
(HL),C
(In') tD
(HL) ,E
(HL) ,H
(HL),L
(HL),n
(IX+4),Aa
(IX+4),B
(IX+d),C
(IX+d),D
(IX+4),E
(IX+4),H
(IX+4),L
(IX+d),n
(IY+d),A
(1Y+4),B
(IY+d4),C
(IY+d),D
(IY+d),E
(IY+d),H
(IY+d),L
(I¥Y+d),n
(nn),A
(nn),BC
(nn),DE
(nn) ,HL
(nn),IXx
(nn), 1Y
(nn),SP
A, (BC)
A, (DE)
A, (HL)
A, (IX+d)
A, (IY+4d)

~ s 0~
-
~

S s s s s s~

~ ~

E

IX+d)
IY+d)

~

’

~ 0~

~

~ s o~

SHIHODQWP ~~~ S HNHI®HOODD

77

70

71

72

73

74

75

3620
DD7705
DD7005
DD7105
DD7205
DD7305
DD7405
DD7505
DD360520
FD7705
FD7005
FD7105
FD7205
FD7305
FD7405
FD7505
FD360520
328405
ED438405
ED538405
228405
DD228405
FD228405
ED738405
0A

1A

7E
DD7E05
FD7E05
3A8405
7F

78

79

7A

7B

7Cc

ED57

7D

3E20
ED5F

46
DD4605
FD4605
47

Appendix A (Alphabetical)

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE6EEEEEEEEEEBEEE

EEEEEE

=
o

BC, (nn)
BC,nn

C, (HL)
C, (IX+d)
C,(IY+d)

~

LR R

MO mOO W

ENEENEN

IX+d)
IY+d)

~

’

NN
HFXTEHOOWY ~~~5

~

=B~ e ivil- vt NeoloNe e NoNeoNe Nel

E, (IY+d)

BN]
S s o~

T EEEm
~ DR
S IIHOQOWP ~~~T NI MOOW N

~ ~

G

IX+d)
IY+d)

~

EpEEEEszEags
B
8o~
=]
g

I,A
IX,(nn)
IX,nn
1Y, (nn)
IY,nn

L, (HL)
L, (IX+4d)
L,(IY+d)

|ED4B8405

018405
4E
DD4E05
FD4EO0S5
4F

48

49

4A

4B

4c

4D
0E20
56
DD5605
FD5605

54

55
1620
ED5B8405
118405
SE
DD5E05
FD5E05
5F

58

59

5A

5B

5C

5D
1E20
66
DD6605
FD6605

2620
2AB405
218405
ED47
DD2A8405
DD218405
FD2A8405
FD218405
6E
DD6E05
FD6E0S

Appendix A (Alphabetical)

LD L,A 6F RES O0,A CB87 RES 6,(IX+d) DDCBO5B6
LD L,B 68 RES 0,B CB80 RES 6,(IY+d) FDCBO5B6
LD L,C 69 RES 0,C CB81 RES 6,A CBB7
LD L,D 6A RES 0,D CB82 RES 6,B CBBO
D L,E 6B RES O0,E CB83 RES 6,C CBB1
LD L,H 6C RES O0,H CB84 RES 6,D CBB2
LD L,L 6D RES O,L CB85 RES 6,E CBB3
LD L,n 2E20 RES 1, (HL) CBSE RES 6,H CBB4
D R,A ED4F RES 1,(IX+d) DDCBOSS8E RES 6,L CBB5
LD SP,(nn) ED7B8405 RES 1,(IY+d) FDCBOSSE RES 7, (HL) CBBE
LD SP,HL F9 RES 1,A CBS8F RES 7,(IX+d) DDCBOSBE
LD SP,IX DDF9 RES 1,B CB88 RES 7,(IY+d) FDCBOSBE
LD SP,1IY FDF9 RES 1,C CB89 RES 7,A CBBF
LD SP,nn 318405 RES 1,D CB8A RES 7,B CBB8
LDD EDAS8 RES 1,E CB8B RES 7,C CBB9
LDDR EDBS8 RES 1,H CB8C RES 7,D CBBA
LDI EDAO RES 1,L CB8D RES 7,E CBBB
LDIR EDBO RES 2, (HL) CB96 RES 7,H CBBC
NEG ED44 RES 2,(IX+d) DDCB0596 RES 7,L CBBD

* NOP 00 RES 2,(IY+d) FDCB0596 RET Cc9
OR (HL) B6 RES 2,A CB97 RET C D8
OR (IX+d) DDB605 RES 2,B CB90 RET M F8
OR (IY+d) FDB605 RES 2,C CB91 RET NC DO
OR A B7 RES 2,D CB92 RET N2Z co
OR B BO RES 2,E CB93 RET P FO
OR o] B1 RES 2,H CB94 RET PE E8
OR D B2 RES 2,L CB95 RET PO EO
OR E B3 RES 3, (HL) CB9E RET 2Z cs
OR H B4 RES 3,(IX+d) DDCBO59E RETI ED4D
OR L BS RES 3,(IY+d) FDCBO59E RETN ED45
OR n F620 RES 3,A CBOF RL (HL) CB16
OTDR EDBB RES 3,B CB98 RL (IX+4) DDCB0516
OTIR EDB3 RES 3,C CB99 RL (IY+d) FDCB0516
ouT (C),A ED79 RES 3,D CB9A RL A CB17
our (C),B ED41 RES 3,E CB9B RL B CB10
our (C),C ED49 RES 3,H CBOC RL C CB11
ouT (C),D ED51 RES 3,L CB9D . RL D CB12
ouT (C),E ED59 RES 4, (HL) CBA6 RL E CB13
ouT (C),H ED61 RES 4,(IX+d) DDCBO5A6 RL H CB14
ouT (C),L ED69 RES 4,(IY+d) FDCBO5A6 RL L CB15
ouT (n),A D320 RES 4,A CBA7 RLA 17
OUTD EDAB RES 4,B CBAO RLC (HL) CB06
OUTIL EDA3 RES 4,C CBA1 RLC (IX+d) DDCB0506
POP AF F1 RES 4,D CBA2 RLC (IY+d) FDCB0506
POP BC c1 RES 4,E CBA3 RLC A CB07
POP DE D1 RES 4,H CBA4 RLC B CB0O
POP HL E1 RES 4,L CBAS RLC C CBO1
POP IX DDE1 RES 5, (HL) CBAE RLC D CB02
POP IY FDE1 RES 5,(IX+d) DDCBOSAE RLC E CBO03
PUSH AF F5 RES 5,(IY+d) FDCBOSAE RLC H CB04
PUSH BC C5 RES 5,A CBAF RLC L CBO05
PUSH DE D5 RES 5,B CBAS8 RLCA 07
PUSH HL E5 RES 5,C CBA9 RLD ED6F
PUSH IX DDES RES 5,D CBAA RR (HL) CB1E
PUSH IY FDES RES 5,E CBAB RR (IX+d) DDCBOS51E
RES 0, (HL) CB86 RES 5,H CBAC RR (IY+d) FDCBOS1E
RES 0,(IX+d) DDCB0586 RES 5,L CBAD RR A CBI1F
RES 0,(IY+d) FDCB0586 RES 6, (HL) CBB6 RR B CB18

A.4

Appendix A (Alphabetical)

RR Cc CB19 SET 1,D CBCA SET 7,B CBF8

RR D CB1A SET 1,E CBCB SET 7,C CBF9

RR E CB1B SET 1,H CBCC SET 7,D CBFA

RR H CB1C SET 1,L CBCD SET 7,E CBFB

RR L CB1D SET 2,(HL) CBD6 SET 7,H CBFC
RRA 1F SET 2,(IX+d) DDCBO5D6 SET 7,L CBFD
RRC (HL) CBOE SET 2,(IY+d) FDCBO5D6 SLA (HL) CB26

RRC (IX+d) DDCBO50E SET 2,A CBD7 SLA (IX+d) DDCB0526
RRC (IY+d) FDCBO50E SET 2,B CBDO SLA (IY+d) FDCB0526
RRC A CBOF SET 2,C CBD1 SLA A CB27

RRC B CB08 SET 2,D CBD2 SLA B CB20

RRC C CB09 SET 2,E CBD3 SLA C CB21

RRC D CBOA SET 2,H CBD4 SLA D CB22
RRC E CBOB SET 2,L CBD5 SLA E CB23

RRC H CBOC SET 3, (HL) CBDE SLA H CB24

RRC L CBOD SET 3,(IX+d) DDCBOSDE SLA L CB25
RRCA OF SET 3,(IY+d) FDCBOS5SDE SRA (HL) CB2E
RRD ED67 SET 3,A CBDF SRA (IX+d) DDCBO052E
RST OH Cc7 SET 3,B CBD8 SRA (IY+d) FDCBO052E
RST 8H CF SET 3,C CBD9 SRA A CB2F
RST 10H D7 SET 3,D CBDA SRA B CB28

RST 18H DF SET 3,E CBDB SRA C CB29
RST 20H E7 SET 3,H CBDC SRA D CB2A

RST 28H EF SET 3,L CBDD SRA E CB2B
RST 30H F7 SET 4, (HL) CBE6 SRA H CB2C
RST 38H FF SET 4,(IX+d) DDCBOSE6 SRA L CB2D
SBC A, (HL) 9E SET 4,(IY+d) FDCBO5SE6 SRL (HL) CB3E

SBC A,(IX+d) DD9EOS SET 4,A CBE7 SRL (IX+d) DDCBOS3E
SBC A,(IY+d) FD9EO5 SET 4,B CBEO SRL (IYy+d) FDCBOS3E
SBC A,A 9F SET 4,C CBE1 SRL A CB3F
SBC A,B 98 SET 4,D CBE2 SRL B CB38

SBC A,C 99 SET 4,E CBE3 SRL C CB39

SBC A,D 9A SET 4,H CBE4 SRL D CB3A
SBC A/E 9B SET 4,L CBES SRL E CB3B

SBC A,H oc SET 5, (HL) CBEE SRL H CB3C
SBC A,L 9D SET 5,(IX+d) DDCBOSEE SRL L CB3D
SBC A,n DE20 SET 5,(IY+d) FDCBOSEE SUB (HL) 96

SBC HL,BC ED42 SET 5,A CBEF SUB (IX+d) DD9605
SBC HL,DE ED52 SET 5,B CBE8 SUB (IY+d) FD9605
SBC HL,HL ED62 SET 5,C CBE9 SUB A 97

SBC HL,SP ED72 SET 5,D CBEA SUB B 90

SCF 37 SET 5,E CBEB SUB C 91

SET 0, (HL) CBC6 SET 5,H CBEC SUB D 92

SET 0,(IX+d) DDCBO05C6 SET 5,L CBED SUB E 93

SET 0,(IY+d) FDCB05Cé6 SET 6, (HL) CBF6 SUB H 94

SET 0,A CBC7 SET 6,(IX+d) DDCBOS5SF6 SUB L 95

SET 0,B CBCO SET 6,(IY+d) FDCBO5F6 SUB n D620

SET 0,C CBC1 SET 6,A CBF7 XOR (HL) AE

SET 0,D CBC2 SET 6,B CBFO XOR (IX+d) DDAEOS5
SET O0,E CBC3 SET 6,C CBF 1 XOR (IY+d) FDAEOS
SET O0,H CBC4 SET 6,D CBF2 XOR A AF

SET O0,L CBCS5 SET 6,E CBF3 XOR B A8

SET 1, (HL) CBCE SET 6,H CBF4 XOR C A9

SET 1,(IX+d) DDCBOS5CE SET 6,L CBF5 XOR D AA

SET 1,(I¥Y+d) FDCBOSCE SET 7,(HL) CBFE XOR E AB

SET 1,A CBCF SET 7,(IX+d) DDCBOSFE XOR H AC

SET 1,B CBC8 SET 7,(IY+d) FDCBOSFE XOR L AD

SET 1,C CBC9 SET 7,A CBFF XOR n EE20

Appendix A (Numeric)

00
018405
02
03

0D
0E20
OF
102E
118405
12

13

14

15
1620
17
182E
19

1A

1B

1c

D
1E20
1F
202E
218405
228405
23

24

NOP
LD

INC
INC
DEC

DEC
INC
DEC
LD
RRCA
DJINZ
LD

INC
INC
DEC

DEC
INC
DEC

INC
INC
DEC

DAA
JR

ADD
LD

DEC
INC
DEC

CPL
JR

INC
INC
DEC
LD

SCF
JR

ADD

ALY,
N
»

~
-

congray
" Eg}

NZ,dis
HL,nn
(nn) ,HL

H,n

Z,dis
HL, HL
HL, (nn)

L,n

NC,dis
SP,nn
(nn),A

(HL)
(HL)
(HL) ,n

C,dis
HL,SP

3A8405

[
lv]

DEC

(=]
z
aa

L}

EEEQES

&

A,(nn)

PPy n
PR N -]
=]

g

OooUo 0‘9 OOO0OO0N0NOWWW WWwww
SNy s N N N w s ~
DQUdP -~ ImOoOQOWUdAHMIBMUAEP ~HIEOOW

mOOoOUDOo
~ ~ IR I IS
onOw» E (-]
-~

0wy = [l]
g

S Y NN NN

[l ol o o o o R N O
<
3
-

P~ ImmO

(HL),B
(HL),C
(HL),D
(HL) ,E

A8

AD

(HL) ,H
(HL),L

g
>

’

>
~
w

.~ .8

~ .
o
3

~

PAt@mmOO

N s

R
» E IO QWM~HMIMOOW
5 B
-~ -~

~

CQOWHP PP DDD D

o
5
~

~

[
PAI®mMOOW

~

HOQWYPPPIPPIPIPI~HIm

o
3
~

I mOOWX»~Hm

Appendix A (Numeric)

AE XOR (HL) CB1D RR L CB5F BIT 3,A
AF XOR A CBI1E RR (HL) CB60 BIT 4,B
BO OR B CB1F RR A CB61 BIT 4,C
B1 OR (o] CB20 SLA B CB62 BIT 4,D
B2 OR D CB21 SLA C CB63 BIT 4,E
B3 OR E CB22 SLA D CB64 BIT 4,H
B4 OR H CB23 SLA E CB65 BIT 4,L
BS OR L CB24 SLA H CB66 BIT 4,(HL)
B6 OR (HL) CB25 SLA L CB67 BIT 4,A
B7 OR A CB26 SLA (HL) CB68 BIT 5,B
B8 CP B CB27 SLA A CB69 BIT 5,C
B9 CP (o] CB28 SRA B CB6A BIT 5,D
BA CP D CB29 SRA C CB6B BIT 5,E
BB CP E CB2A SRA D CB6C BIT 5,H
BC cp H CB2B SRA E CB6D BIT S5,L
BD Cp L CB2C SRA H CB6E BIT 5,(HL)
BE CP (HL) CB2D SRA L CB6F BIT 5,A
BF Ccp A CB2E SRA (HL) CB70 BIT 6,B
co RET N2 CB2F SRA A CB71 BIT 6,C
Cc1 POP BC CB38 SRL B CB72 BIT 6,D
C28405 JP NZ,nn CB39 SRL C CB73 BIT 6,E
C38405 JP nn CB3A SRL D CB74 BIT 6,H
C48405 CALL NZ,nn CB3B SRL E CB75 BIT 6,L
C5 PUSH BC CB3C SRL H CB76 BIT 6,(HL)
C620 ADD A,n CB3D SRL L CB77 BIT 6,A
c7 RST O0O0H CB3E SRL (HL) CB78 BIT 7,B
c8 RET 2 CB3F SRL A CB79 BIT 7,C
co RET CB40 BIT 0,B CB7A BIT 7,D
CA8405 JP Z,nn CB41 BIT O0,C CB7B BIT 7,E
CB0O RLC B CB42 BIT 0,D CB7C BIT 7,H
CBO1 RLC C CB43 BIT O,E CB7D BIT 7,L
CB02 RLC D CB44 BIT O,H CB7E BIT 7,(HL)
CBO3 RLC E CB45 BIT O,L CB7F BIT 7,A
CB04 RILC H CB46 BIT O0,(HL) CB80 RES 0,B
CBOS RLC L CB47 BIT O0,A CB81 RES 0,C
CB06 RLC (HL) CB48 BIT 1,B CB82 RES 0,D
CBO7 RLC A CB49 BIT 1,C CB83 RES O0,E
CB08 RRC B CB4A BIT 1,D CB84 RES O0,H
CB09 RRC -C CB4B BIT 1,E CB85 RES O0,L
CBOA RRC D CB4C BIT 1,H CB86 RES 0, (HL)
CBOB RRC E CB4D BIT 1,L CB87 RES 0,A
CBOC RRC H CB4E BIT 1,(HL) CB88 RES 1,B
CBOD RRC L CB4F BIT 1,A CB89 RES 1,C
CBOE RRC (HL) CB50 BIT 2,B CB8A RES 1,D
CBOF RRC A CB51 BIT 2,C CB8B RES 1,E
CB10 RL B CB52 BIT 2,D CB8C RES 1,H
CB11 RL Cc CB53 BIT 2,E CB8D RES 1,L
CB12 RL D CB54 BIT 2,H CBS8E RES 1,(HL)
CB13 RL E CB55 BIT 2,L CBS8F RES 1,A
CB14 RL H CB56 BIT 2,(HL) CB90 RES 2,B
CB15 RL L CB57 BIT 2,A CB91 RES 2,C
CB16 RL (HL) CB58 BIT 3,B CB92 RES 2,D
CB17 RL A CB59 BIT 3,C CB93 RES 2,E
CB18 RR B CB5A BIT 3,D CB9%4 RES 2,H
CB19 RR C CB5B BIT 3,E CB95 RES 2,L
CB1A RR D CB5C BIT 3,H CB96 RES 2, (HL)
CB1B RR E CB5D BIT 3,L CB97 RES 2,A
CB1C RR H CBSE BIT 3,(HL) CB98 RES 3,B
A.7

Appendix A (Numeric)

CB99 RES 3,C CBD3 SET 2,E D9 EXX

CB9A RES 3,D CBD4 SET 2,H DA8405 JP C,nn
CB9B RES 3,E CBD5 SET 2,L DB20 IN A,(n)
CB9C RES 3,H CBD6 SET 2,(HL) DC8405 CALL C,nn
CB9D RES 3,L CBD7 SET 2,A DD09 ADD IX,BC
CB9E RES 3, (HL) CBD8 SET 3,B DD19 ADD IX,DE
CBOF RES 3,A CBD9 SET 3,C DD218405 LD IX,nn
CBAO RES 4,B CBDA SET 3,D DD228405 LD (nn),IX
CBA1 RES 4,C CBDB SET 3,E DD23 INC IX

CBA2 RES 4,D CBDC SET 3,H DD29 ADD IX,IX
CBA3 RES 4,E CBDD SET 3,L DD2A8405 LD IX,(nn)
CBA4 RES 4,H CBDE SET 3, (HL) DD2B DEC IX

CBAS RES 4,L CBDF SET 3,A DD3405 INC (IX+d)
CBA6 RES 4, (HL) CBEO SET 4,B DD3505 DEC (IX+d)
CBA7 RES 4,A CBE1 SET 4,C DD360520 LD (IX+d),n
CBA8 RES 5,B CBE2 SET 4,D DD39 ADD IX,SP
CBA9 RES 5,C CBE3 SET 4.,E DD4605 LD B, (IX+d)
CBAA RES 5,D CBE4 SET 4,H DD4EO05 LD C, (IX+d)
CBAB RES 5,E CBES5 SET 4,L DD5605 LD D, (IX+4d)
CBAC RES 5,H CBE6 SET 4, (HL) DD5E05 LD E, (IX+d)
CBAD RES 5,L CBE7 SET 4,A DD6605 LD H, (IX+d)
CBAE RES 5, (HL) CBE8 SET 5,B DD6EO5 LD L, (IX+d)
CBAF RES 5,A CBE9 SET 5,C DD7005 LD (IX+d),B
CBBO RES 6,B CBEA SET 5,D DD7105 LD (IX+d),C
CBB1 RES 6,C CBEB SET 5,E DD7205 LD (IX+4),D
CBB2 RES 6,D CBEC SET 5,H DD7305 LD (IX+d),E
CBB3 RES 6,E CBED SET 5,L DD7405 LD (IX+d),H
CBB4 RES 6,H CBEE SET 5,(HL) DD7505 LD (IX+4),L
CBBS RES 6,L CBEF SET 5,A DD7705 LD (IX+d),A
CBB6 RES 6, (HL) CBFO0 SET 6,B DD7EQ5 LD A, (IX+d)
CBB7 RES 6,A CBF1 SET 6,C DD8605 ADD A, (IX+d)
CBB8 RES 7,B CBF2 SET 6,D DD8E05 ADC A, (IX+d)
CBB9 RES 7,C CBF3 SET 6,E DD9605 SUB (IX+d)
CBBA RES 7,D CBF4 SET 6,H DD9EO5 SBC A, (IX+d)
CBBB RES 7,E CBF5 SET 6,L DDA605 AND (IX+d)
CBBC RES 7,H CBF6 SET 6, (HL) DDAEOS XOR (IX+4)
CBBD RES 7,L CBF7 SET 6,A ‘DDB605 OR (IX+d)
CBBE RES 7, (HL) CBF8 SET 7,B DDBEO0S5 Ccp (IX+4d)
CBBF RES 7,A CBF9 SET 7,C DDCB0506 RLC (IX+d)
CBCO SET 0,B CBFA SET 7,D DDCBOS50E RRC (IX+d)
CBC1 SET 0,C CBFB SET 7,E DDCB0516 RL (IX+d)
CBC2 SET 0,D CBFC SET 7,H DDCBOS1E RR (IX+d)
CBC3 SET O0,E CBFD SET 7,L DDCB0526 SLA (IX+d)
CBC4 SET O0,H CBFE SET 7,(HL) DDCBO52E SRA (IX+d)
CBC5 SET O0,L CBFF SET 7,A DDCBO53E SRL (IX+d)
CBC6 SET 0, (HL) CC8405 CALL Z,nn DDCB0546 BIT 0, (IX+d)
CBC?7 SET O0,A CD8405 CALL nn DDCBOS54E BIT 1,(IX+d)
CBC8 SET 1,B CE20 ADC A,n DDCB0556 BIT 2, (IX+d)
CBC9 SET 1,C CF RST 08H DDCBOS55E BIT 3, (IX+d)
CBCA SET 1,D DO RET NC DDCB0566 BIT 4, (IX+d)
CBCB SET 1,E D1 POP DE DDCBO56E BIT 5,(IX+d)
CBCC SET 1,H D28405 JP NC,nn DDCB0576 BIT 6, (IX+d)
CBCD SET 1,L D320 oUT (n),A DDCBO57E BIT 7,(IX+d)
CBCE SET 1,(HL) D48405 CALL NC,nn DDCB0586 RES 0, (IX+d)
CBCF SET 1,A D5 PUSH DE DDCBOS8E RES 1,(IX+d)
CBDO SET 2,B D620 SUB n DDCB0596 RES 2, (IX+d)
CBD1 SET 2,C D7 RST 10H DDCBOS9E RES 3, (IX+d)
CBD2 SET 2,D D8 RET C DDCBO5A6 RES 4, (IX+d)

DDCBOSAE
DDCB05B6
DDCBOSBE
DDCBO05C6
DDCBOSCE
DDCBO5D6
DDCBOS5SDE
DDCBOSE6
DDCBOSEE
DDCBO5F6
DDCBOSFE
DDE1
DDE3
DDES
DDE9
DDF9
DE20

DF

EO

E1
E28405
E3
E48405
E5

E620

E7

E8

E9
EA8405
EB
EC8405
ED40
ED41
ED42
ED438405
ED44
ED45
ED46
ED47
ED48
ED49
ED4A
ED4B8405
ED4D
ED4F
ED50
ED51
ED52
ED538405
ED56
ED57
ED58
ED59
EDSA
ED5B8405
EDSE
EDSF
ED60

SET
SET
SET

EX
PUSH

CALL
IN

SBC
m1l
IN

ouT

M2
LD
IN

5,(IX+d)
6, (IX+d)
7, (IX+4d)
0, (IX+d)
1, (IX+d)
2,(IX+d4)
3, (IX+d)
4, (IX+d4)
5, (IX+d)
6, (IX+d)
7, (IX+d)
IX
(SP),IX
IxX

(IX)
SP,IX
A,n

18H

PO

HL
PO,nn
(SP) ,HL
PO,nn
HL

n

20H

PE

(HL)
PE,nn
DE, HL
PE,nn

B, (C)
(¢),B
HL,BC
(nn),BC

I,A
c,(C)
(c),c

BC, (nn)

R,A
D,(C)
(C),D
HL,DE
(nn),DE

A I
E, (C)
(C),E

DE, (nn)

ED61
ED62
ED67
ED68
ED69
ED6A
ED6F
ED72
ED738405
ED78
ED79
ED7A
ED7B8405
EDAO
EDA1
EDA2
EDA3
EDAS8
EDA9

EF

FO

F1
F28405
F3
F48405
F5

F620

F7

F8

F9
FA8405
FB
FC8405
FDO09
FD19
FD218405
FD228405
FD23
FD29
FD2A8405
FD2B
FD3405
FD3505
FD360520
FD39
FD4605
FD4E0S5

ouT
SBC

IN

SBC
LD

CALL
PUSH

ADD
ADD
LD
LD
INC
ADD
LD
DEC
INC
DEC
LD
ADD
LD
LD

(C),H
HL ,HL

L,(C)
(C),L
HL,HL

HL,SP
(nn), SP
A,(C)
(C),A
HL,SP
SP, (nn)

28H

SP,HL
M,nn

M,nn
1Y,BC
1Y,DE
IY,nn
(nn),IY
IY
IY,I1Y
IY,(nn)
IY
(IY+d)
(IY+4d)
(IY+d),n
IY,SP

B, (IY+d)
C,(1Y+4)

Appendix A (Numeric)

FD5605
FD5EOQ05
FD6605
FD6EOS5
FD7005
FD7105
FD7205
FD7305
FD7405
FD7505
FD7705
FD7E05
FD8605
FDSEOS5
FD9605
FD9EO5
FDA605
FDAEOS5
FDB605
FDBEOS5
FDCB0506
FDCBO50E
FDCB0516
FDCBO51E
FDCB0526
FDCBO52E
FDCBOS53E
FDCB0546
FDCBO54E
FDCB0556
FDCBOS55E
FDCB0566
FDCBOS6E
FDCB0576
FDCBOS7E
FDCB0586
FDCBOS8E
FDCB0596
FDCBOS9E
FDCBO5A6
FDCBOSAE
FDCBO5B6
FDCBOSBE
FDCBO5C6
FDCBOSCE
FDCBO5D6
FDCBOSDE
FDCBOS5E6
FDCBOSEE
FDCBOS5F6
FDCBOSFE
FDE1
FDE3
FDES
FDE9
FDF9
FE20

FF

EEEEEEEBEEEELEE

SET
SET
SET
SET
SET
SET
SET
SET

EX
PUSH

LD
CP

D,(IY+d)
E,(IY+d)
H,(IY+d)
L,(IY+d)
(1Y+4),B
(1Y+d),C
(IY+d),D
(IY+d4) ,E
(IY+d),H
(1Yy+4),L
(IY+d),A
A, (IY+4d)
A,(IY+4d)
A, (IY+4d)
(IY+4)
A, (IY+d)
(IY+4)
(I1Y+d)
(IY+4)
(IY+d)
(IY+4)
(IY+d)
(IY+4)
(IY+4)
(IY+4d)
(1IY+4)
(IY+d)
0,(IY+d)
1,(IY+4d)
2,(1Y+4)
3,(1Y+4)
4,(1Y+d)
5,(1Y+4)
6,(1Y+d)
7,(1IY+4d)
0,(1IY+d)
1,(IY+d)
2,(1Y+4)
3,(1Y+4)
4,(1IY+4d)
5,(1Y+d)
6,(IY+d)
7,(1Y+d)
0,(IY+d)
1,(IY+4)
2,(IY+d)
3,(IY+4)
4,(1IY+d)
5,(IY+4)
6,(IY+d)
7,(IY+d)
Iy
(sp),IY
Iy

(IY)
SP,IY

n

38H

Appendix A

Alternative Mnemonics

ZASM allows several alternative forms of the Zilog mnemonics as a
programming convenience:

8-bit arithmetic instructions need not specify the first argument (which
is always the A register):

bytes assembled Instruction
80 ADD A,B
80 ADD B
89 ADC A,C
89 ADC C
A2 AND A,D
A2 AND D
FE20 CP A,20H
FE20 CP 20H
B3 OR A,E
B3 OR E
9C SBC A,H
ac SBC H
95 SUB A,L
95 SUB L
AE XOR A, (HL)
AE XOR (HL)

With EX AF,AF' the single quote may be omitted from either, both or
neither operand:

08 EX AF,AF'
08 EX AF ,AF

08 EX AF',AF
08 EX AF',AF'

For RELATIVE jump instructions, the argument is taken as the absolute
target to jump to - just as for ABSOLUTE jumps:

LOOP: DEFS 20H
C32007 JP LOOP 7 ABSOLUTE
18DB JR LOOP ; RELATIVE

ZASM syntax differs in this respect from some of the examples found in
Zilog publications, where the form JR LOOP-$ is used. In the Zilog case
the argument is the offset to, rather then the address of, the target.

For 'DJNZ' both Zilog and Mostek forms are accepted:

10D9 DJINZ LOOP ;ZILOG

10D7 DJINZ, LOOP ; MOSTEK
but:

00 DJ NZ ,LOOP

is not accepted.

A.10

Appendix A

With DEFB, DEFW and FREE-FORMAT a trailing comma is ignored:

0102 DEFB 1.2,
01000200 DEFW 1.2,
0102 1,2, ;TREATED AS DEFB

An embedded comma generates zero:

010002 DEFB 1,,2
01000000 DEFW 1,.,2
010002 1,.2 ; ZERO BYTE
01000002 1,,,2 ; ZERO WORD

Two additional instructions are available with ZASM:
EMT expr

generates the hex code F7 (RST 30H) followed by the 8 bit value of expr.;
CALR label

generates a relative procedure call to label, with the hex code EF (RST

28H) followed by the relative distance to label, computed as for the JR
instruction.

Examples:

F705 EMT 5 ;OUTPUT TO LST:
EF00 CALR $+2 ;PUSH PC

Appendix B

APPENDIX B

ERROR CODES

ZASM flags errors with >X, where X is an error code. This is to allow a
search of a listing file for all errors, by looking for all occurences of
the characters 'RETURN, LINEFEED,>' with a text editor.

The meanings of the codes are:

bracket (parenthesis) error
conditional error

expression error

illegal character in context
multiple definition of symbol
number error

origin redefined backwards
phase error

register name misused

bad syntax

undefined symbol

value error

<cdhhxmWOZIXIHEOW

Examples:

Bracket Error

>B0766 3E07 LD A,1 + (2 *3

>B LD HL),A

>B LD (HL,A .
Conditional Error (no COND)

>C ELSE

>C ENDC
Illegal Character

>I0768 78 LD A,B,

>I0769 3E00 LD A,Z**4

>I076B EDBO LDIR DE ;BAD ARG

Multiple Definition

0005
>M0006

BDOS EQU 5
BDOS EQU 6

Appendix B

Number Error

>N076D 00 DEFB 13B ;NOT BINARY
>NO76E 00 DEFB 8Q i NOT OCTAL
>NO76F 00 DEFB 0A iNOT DECIMAL

Origin Redefined
coM
ORG 300H
>0 ORG 100H

Phase Error

0770 78 TEST:

LD A,
>P0771 41 TEST: LD B,

B

(o]

Note that in this case error message will have been preceded by a
message of the form: Multiple def at line xxxx.

Register Error

>R BC: LD BC,5

Bad Syntax

Most errors fall into this class.

>s * LIST LAB ;BAD ARG

>U0772 00 FINAL LD A,0 ;EQU EXPECTED

>S LD (HL+ 3),0

>s DEFM AB ; NO STRING

>S0773 4142093B DEFM 'AB ;MISSING QUOTE

>S LD A,'AB' ; STRING TOO LONG

Undefined Symbol

>U0784 210000 LD HL,GAP
>U0787 00 DEFB TRANS + 5

An undefined condition is treated as false

>U COND FDS
DEFB 0
ELSE

0106 01 DEFB 1
ENDC

Appendix B

Value Error

The value is illegal or too large for its context;

>V0788 00 DEFB 3/0

>V0789 0000 DEFW BEGIN SHR 17
>V078B 00 DEFB 100H
>V078C 3E00 LD A,200H
>VO078E CB47 BIT 9,A

Console Messages
The following messages may appear on the console:

Label: multiple def at line xxxx

N.B. If a label is a local label then the $ is not printed.
Thus 1$ produces
1: multiple defeeesan

Bad input, try again:
ZASM could not evaluate the imput to QUERY

ZASM: aborted
User typed CONTROL C

ZASM: symbol table overflow
Assembly is aborted - too many symbols defined

ZASM:cannot open source file
ZASM:cannot open included file
Probably results from incorrect file specification

ZASM:read error on source file
ZASM:write error, files closed
ZASM:cannot close files
Fatal errors. May be insufficient space on disc

ZASM:directory full
ZASM:Macro phase error
ZASM:COND/ENDC too deeply nested

character 4.7

$ character 2.3, 3.3, 4.7
% operator 6.3

' character 4.7

(character 4.7

* character 7.1

+ character 4.7

- character 4.7
Absolute object code 1.1
Absolute segment 5.2
Actual macro parameters 6.2
Address 3.2, 5.1

- Absolute 1.2

~ Relocatable 1.2
Alternative mnemonics A.14
Arguments 3.3, 3.4
Arithmetic operators 2.5

ASCII character constant 4.6

ASCII format 1.4
ASEG pseudo-opcode 4.1
Assembler commands 1.3

Assembling a relocatable prog. 1.5

Assembling an absolute prog.

Assigning symbol value 4.3,
B error B.1

Binary output file 1.2
Blank common 5.3

Body (of a macro) 6.1

Books 1.1

Boolean operators 2.5

C error B.1

CALL 3.2

Carriage return 2.1, 2.5, 4.5
Character constant 2.3, 4.6

Character set 2.1
Code

-~ Object 1.1

- Source 1.1
Code-relocatable segment
Colon 2.2
COM file 1.4, 5.1
COM pseudo-opcode
Comma 3.3, 4.2
Commands to the assembler
Comment 3.4
Comments 2.1, 2.5,

4.1

1.3

3.2

4.5

INDEX

Common block (or segment)
- Blank 5.3
- Offsets within
- Size of 5.4

5.3

COMMON pseudo-opcode 4.1
COND expression 2.6
COND pseudo-opcode 4.1

Conditional assembly block 4.1

Console keyboard input 2.2
Console messages B.3
Constant

~ Character 2.3, 4.6

- String 2.3

- Value 2.2
Construction of a program 3.1

Conversion, object to program
CP/M 1.2, 3.2, 5.2
CSEG pseudo-opcode
CTRL/I 3.4

4.2

Index

1.4

Current assembly address 2.3
Data definition 4.6
Data-relocatable segment 5.3
DDT utility program 1.4
Debugging 1.4
Default radix 4.5, 4.6

DEFB pseudo-opcode 4.2, 4.6
Defining a symbol 2.1
DEFL pseudo-opcode 4.2
DEFM pseudo-opcode 4.2, 4.6
DEFS pseudo-opcode 4.2, 4.8
DEFW pseudo-opcode 4.3, 4.6
DEMO.COM 1.4

DEMO.HEX 1.2
DEMO.PRN 1.3

DEMO.ZSM 1.2
Demonstration program 1.4, 3.1, 6.5
DEMOR.COM 1.5
DEMOR.REL 1.5

DIR 1.2
Directives 1.1

- *E(ject) 7.2

- *F(ormfeed) 7.2

~ *H(eading) 3.4, 7.2

- *I(nclude) 7.1

- *L(ist) 7.2

= *N(umbering) 7.3

- *P(rint) 7.4
- *R(equest) 7.1
- *S(ymbols) 7.4

Index

Directives (=-contd.) Error, phase 4.2
~ *U(pper case) 2.1, 7.3 Escape character 4.6
- *W(idth) 7.3 Escape sequences 3.2
- *X (Cross-reference) 7.4 Evaluation of expressions 6.3
- Identification of 7.1 Executable code 3.4
- List of 7.1 Expression 2.5
Disc (distribution) 1.2, 3.1 - Evaluation 6.3
Disc drive - Mode 2.5
- Names 1.3 - Restrictions 5.4
- P 1.3 Extension file name 1.3
- X 1.3 EXTERNAL pseudo-opcode 4.3
-2 1.4 External symbols 5.2

Disc units 1.3

Distribution disc 1.2, 3.1 F(ormfeed) directive 7.2
Dollar character 2.1, 3.3 False 2.5
Dollar symbol 2.3 File
Drives (disc) 1.3 - Extension 1.3
DSEG pseudo-opcode 4.3 - Name 1.3
Dummy macro parameters 6.2 - Type 1.3
Firmware manual 1.2
E error 5.4 Forbidden operations 5.4
E(ject) directive 7.2 Formatting source listing 1.1
Editing Formfeed character 7.2
- Object code 1.2 Free-format data definition 4.7
- Registers 1.2 Free-format source code 3.4
- Source code 1.1 Front Panel 1.2
Elements of a program 3.1 Further reading 1.1
Elements of a statement 2.1
ELSE pseudo-opcode 4.1, 4.3 GLOBAL pseudo-opcode 4.4
EMDM pseudo-opcode 4.3 Global symbols 2.3, 5.2
EMT instruction emulation 6.2
EMT's 3.2 H(eading) directive 3.4, 7.2
Emulation by macro 6.2 Heading 3.4
END pseudo-opcode 4.3 Hexadecimal codes 1.1
END statement 3.3
ENDC pseudo-opcode 4.1, 4.3 I error B.1
Entering keyboard data 4.5 I(nclude) directive 7.1
EQU pseudo-opcode 4.3 Input
EQU statement 2.1 - from keyboard 2.2
Error codes B.1 - Invalid 4.5
- B B.1 = prompting 2.2
-C B.1 Instruction mnemonics 1.1
- E B.1, 5.4 Instructions
-1 B.1 = Arithmetic A.1
- M B.1 - CALR A.1
- N B.1, B.2 - DJINZ A.1
-0 B.1, B.2 - EMT A.1
- P B.1, B.2, 4.8 - EX A.1
- R B.1, B.2, 2.1 - Mostek A.1
- S B.1, B.2 - Relative Jump A.1
- U B.1, B.2, 4.8 - ZASM A.1
-V B.1, B.3 - Zilog A.1
Error listing on screen 1.4 Intel 8080 mnemonics 1.4
Error messages B.3 Intel Hex format 1.1, 1.4

Index

Jump 2.3, 3.3 Memory reservation 4.2
Merging .HEX files 1.4
Keyboard 2.2, 4.5 Messages on console screen B.3, 1.2
Microsoft format 1.5
L(ist) directive 7.2 Microsoft relocatable format 1.1
L80 1.5 Mnemonics 1.1
Label 3.2 Mnemonics, alternative A.14
- Mode 2.2 Mode of $ symbol 2.3
- Value 2.2 Mode of a label 2.2
Label & symbol table 3.2, 7.4 Mode of an expression 2.5
Layout of program 3.4 Modes of operands 5.4
Length of symbols 2.1 Module 5.1, 5.2
Length of table 2.3 Module linking 4.4
Libraries 5.5 Modules
LIBRARY pseudo-opcode 4.4, 5.5 - Executable 1.2
Line feed 2.1 - Linking 1.2
Line numbering 7.2 - Relocatable 1.2
Linkage editor 1.2, 5.1 Mostek Corp. 1.1
Linker 5.2 MSG.REL 1.5
- Limitations 5.4 MSG.ZSM 1.5
Linking 5.1 Multiple arguments 3.3
Linking modules 4.4
Listing N error B.2
- Errors on screen 1.4 N(umbering) directive 7.3
- File 1.3 NAME pseudo-opcode 4.4, 5.5
- On console screen 1.3 Naming macros 1.2
= On printer 1.3 N Nesting of CONDs 4.1
- Source code 1.1 Non-local symbols 2.3
- Symbol values 3.2 Number
LOAD.COM 1.4 - Binary 2.3
Loader 5.1 - Decimal 2.3
Loading the assembler 1.2 - Hexadecimal 2.3
Local symbols 2.1, 2.3 - Octal 2.3
Logical operators 2.5 Numbering of lines and pages 7.2
Lower case characters 2.1 Numbers 2.1
M error B.1 O error B.2
Machine code 1.1 Object code
Machine Language Prog. Guide 1.2 - Absolute 1.1
Macro 1.2, 6.1 - Relocatable 1.1
- Examples of use 6.4, 6.5 Object code file 1.3
- Parameters 6.2 Object code start address 3.4
- Redefinition 6.4 Object to program conversion 1.4
MACRO pseudo-opcode 4.4 Opcodes 3.4
Manuals - Pseudo- 1.2
- CP/M Operating System 1.5 Operand modes 5.4

= Machine Code Programming 1.1 Operations, forbidden 5.4
- Machine Lang. Programming 1.2 Operators 2.5
- System User Guide 1.2 - Arithmetic 2.5

- Z80 Assemb. Prg. (Zilog) 1.1 - Boolean 2.5

= 280 Programming (Mostek) 1.1 - Logical 2.5
Marking end of string 2.3 - Priority of 2.6
Memory image file 1.4 Order of operations 2.6
Memory locations 1.2 ORG pseudo-opcode 4.4, 4.7

Index

ORG statement 3.3 Pseudo-opcodes (-contd.)
Origin 5.1, 5.2 - ORG 4.4, 4.8
Origin of program 4.5 - QUERY 4.4
Overflow 2.5, 3.3 - RADB 4.5
- RADD 4.5
P error B.2, 4.8 - RADH 4.5
P(rint) directive 7.4 - RADO 4.5
Page numbering 7.2 Punctuation characters 2.1
Page throw 7.2
Parameters of a macro QUERY pseudo-opcode 2.2, 4.4
- Actual 6.2 Quote 2.1
- Dummy 6.2
Parentheses 2.5 R error B.2, 2.1
Permanent symbol 2.1 R(equest) directive 7.1
Phase error 4.2 RADB pseudo-opcode 4.5
Primary file name 1.3 RADD pseudo-opcode 4.5
Printer option 1.3 RADH pseudo-opcode 4.5
Priorities of operators 2.6 Radix
Program - Binary 4.5
= Construction 1.2, 3.1 - Decimal 4.5
- Counters 2.2, 5.3 - Hexadecimal 4.6
~ Debugging 1.2 - Octal 4.5
- Editing 1.1 Radix indicator 4.5, 4.6
- Elements 3.1 Radix of a number
- Errors 1.2 - Default 2.3
- Example 1.2 - Setting 2.3
- Layout 1.2, 3.4 RADO pseudo-opcode 4.5
- Name 1.2 RAM 5.3
- Origin 4.5 Read-only memory (ROM) 5.3
- Relocation 1.2 Read/write memory (RAM) 5.3
- Start address 4.3 Redefinition of macros 6.4
Prompting for input 2.2, 4.5 Redefinition of symbols 2.1
Pseudo-opcodes 1.2, 3.4, 4.1 References 1.1
- ASEG 4.1 Registers 1.2, 2.1, 3.2
~ COM 4.1 Relocating
- COMMON 4.1 - Format 1.2
- COND 4.1 - Modules 1.2
~ CSEG 4.2 - Object code 1.1
- DEFB 4.2, 4.6 - Programs 1.2, 1.5, 5.1
- DEFL 4.2 Replacement text 6.1, 6.2
- DEFM 4.2, 4.6 Reserving storage 4.2, 4.7
- DEFS 4.2, 4.8 Restrictions on expressions 5.4
- DEFW 4.3, 4.6 RET 3.2
- DSEG 4.3 ROM 5.3
- ELSE 4.1, 4.3 Running a program 1.2, 1.4, 1.5
~ END 4.3
- ENDC 4.1, 4.3 S error B.2
- ENDM 4.3 S(ymbols) directive 7.4
- EQU 4.3 Sample program 1.2, 3.1
- EXTERNAL 4.3 SAVE command 1.4
- GLOBAL 4.4 Scope of local symbol 2.3
- LIBRARY 4.4, 5.5 Screen messages B.3

= MACRO 4.4
- NAME 4.4, 5.5

Segment

- Absolute 5.2

- Code-relocatable

- Common 5.3

- Data-relocatable
Semicolon 2.1, 2.5
Single-stepping 1.2
Source code

- File 1.3

- Format 3.4

- Listing 1.1

- Preparation 1.1
Spaces in a statement 2.1
Stack 3.2, 3.3
Start address 1.4,
Statement
Comments 2.1
Construction
Elements 2.1
Format 3.4
Label 2.2
Local symbols
Numbers 2.1
Punctuation
Spaces 2.1
Strings
Symbols
TAB's
Tokens 2.1
Storage reservation
String 2.1
- Constant

- End marker
Subroutines
Suppressing

- Listing output file 1.4
- Object code file 1.4
Symbol 2.1
- Definition
External
Global
Length
Permanent
Redefinition
User-defined 2.1,
Value listing 3.2
Symbol & label table
System

- Disc 1.2

= Information file
= User Guide 1.2

5.2

5.3

4.3

2.1

2.1
2.1

2.1

2.1
2.
4.2

2.3
2.3
6.4

2.1, 3.3
5.2
5.2
2.1
2.1

2.1
2.2

3.2, 7.4

1.3

Index

TAB character 2.1,
Table length 2.3
Table of symbols & labels

3.4

3.2

Target for jump 2.3
Title 3.4
Token 2.1

Transient Program Area (TPA) 1.4
True 2.5
TXED text editor 1.1
U error B.2, 4.8
U(pper case) directive 2.1, 7.3
Up-arrow character 2.3, 4.6, 4.7
Upper case characters 2.1
User-defined symbol 2.1, 2.2
V error
Value

= Constant

- Variable
Variable value

B.3
2.2
2.2

2.2

W(idth) directive 7.3

X (Cross-reference) directive

280

= Instructions
- Programming
ZASM 1.3

- Directives

- Macros 1.2
ZASM mnemonics A.1

- in alphabetical order

= in function order A.10
= in numerical order A.6
ZASM.COM 1.2

Zilog

- Assembly language
- Inc. 1.1
- Mnemonics

3.4
1.1

1.1

A.2

1.1

1.1

USER’S COMMENTS

To help Research Machines to produce the highest
quality microcomputers, supporting software, and
technical publications, we like to hear from users about
their experiences with our products.

Do share your thoughts with us by jotting them down
on the tear-off form on the next page. You can leave out
your personal details, if you want to. Fold the form in
two, seal it with a piece of adhesive tape, and put it in the
post. No stamp is needed if you post it within the United
Kingdom.

If you would like to give more information than we have
allowed room for on the form, we will be very pleased to

receive a separate letter from you. You can even use the
form to ask for a post-paid envelope, if you wish.

Additional information will be most useful, if you give
us as much detail as possible about your hardware
configuration, software version number, or manual title,
8o that we can relate your comments to the correct
products.

Seal with self-adhesive tape (not staples) along this edge.

RESEARCH MACHINES

MICROCOMPUTER SYSTEMS |

Postage
will be
paid by
licensee

Fold along this line.

Do not affix Postage Stamps if posted in
Gt Britain, Channel Islands, N Ireland
or the Isle of Man

BUSINESS REPLY SERVICE
Licence No OF32.

TECHNICAL PUBLICATIONS DEPT
RESEARCH MACHINES LTD

PO BOX 75 OXFORD

OX2 0BR

USER’S COMMENTS ZASM ASSEMBLER FOR DISC AND NETWORK PN 11066

User's comments help us to improve our products. If you would like to make any comments,
please use this reply-paid form.

Your comments:

Research Machines may use this information in any way believed tobe appropriate and without
obligation.

Although it is not essential, it would be helpful if you gave the following information:

Organization.
AAreSS ...

System: 380Z/480Z/ Network m} Cassette / 5.25" discs / 8" discs
(Delete as necessary)

RESEARCH MACHINES

MICROCOMPUTER SYSTEMS

