Machine Language
- Programming
Guide

For 380Z and 480Z

RESEARCH
MACHINES

Guide to Machine Language Programming for the 380Z and 4802

Release 1, November 1981

Copyright (c) Research Machines Limited 1981

All rights.reserved. Copies-of this publication may be made by customers
exclusively for their own use, but otherwise no part of it may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language without the prior written permission of
Research Machines Limited, Post Office Box 75, Oxford, England, OX2 OBW.
Tel: Oxford (0865) 49791.

The policy of Research Machines Limited is one of continuous development and
improvement of its products and services, and the right is therefore reserved

to revise this document or to make changes in the computer software it describes
without notice. Research Machines Limited make every endeavour to ensure the
accuracy of the contents of this document but do not accept liability for any
error or omission.

Additional copies of this publication may be ordered from Research Machines
Limited at the address above. Please ask for 'Guide to Machine Language
Programming for the 380Z and 480z°'.

ii

SECOND EDITION

November, 1981

This document is a revision of the 380Z Assembler's Guide written by

i Colin Opie of the Advisory Unit for Computer Based Education, Hatfield,
Hertfordshire, in August 1980.

Research Machines Limited would like to extend their thanks to AUCBE
for permission to reprint this manual.

iii

FIRST EDITION

SECOND EDITION

©

1lst Printing
2nd Printing

3rd Printing

250 August 1980
250 October 1980

250 February 1981

Reprinted for Research Machines

Limited

iv

November 1981

PREFACE
AR

This is one of a series of texts for users of the Research Machines 3802
microcomputer system. At least three categories of user exist:

(a) Users who wish to use the microcomputer as a computing aid
and who are mainly interested in high level manipulation

(b) Those who will turn also to low level assembly programming

(c) Users who would take an interest in the hardware aspects of
a microcomputer system

In this text the emphasis lies for those interested in assembly
programming.

The 280 microprocessor is proving itself to many users as a powerful
device. It is true that the 280, like any other microprocessor, will be
succeeded at some time, though at present it does represent a "state-of-the-
art" in microcomputer technology.

Research Machines Computer Systems 380Z microcomputer uses the power
and versatility of the Z80 extremely well. Many people, including industrial
and educational establishments are using this particular system. Owing to
the number of different configurations available in this system a very
general, though comprehensive, approach has been taken for this text.
In this way it should make no difference whether the reader is using a 'single
Cassette System' or a 'Dual Floppy Disc with Twin-controlled Cassette' system.

A very general introduction to the machine side of the 380Z is first
given. This is intended to provide a ground knowledge for the subsequent sections.

The 'Front Panel' of the 380Z is one of its more useful attributes and
the first section deals with this. Prior to any machine programming with the
380Z a good working knowledge of this 'panel' is more than useful. It is
true that 'Assemblers' take a lot of hard work out of machine-level
programming, but this does not mean that assemblers should be a good starting
point. The 'front panel' when used properly is an extremely useful tool in
the instruction of machine-level programming.

Section 2 deals with the enormous instruction set of the Z80. Similar
types of instructions are grouped together to aid explanations. ' The mechanism
of the instruction is given, the effect on flags shown, and so on. In this
way it is intended that the text can be a little more than just an 'instruction
reference'.

Two appendices exist which include instruction tables, and program
examples.

C.N. OPIE
1980

Acknowledgements:

Much time and effort has been given by various people, notably Peter
Andrews, Ken Maynard and Dennis Pitchforth. Unfortunately this edition does
not appreciably show their support. Many thanks go to these people and
the secretarial staff for all their hard work.

)] 1] =] &) o)) o) o])]) o) o1))

CONTENTS

INTRODUCTION
Introduction . .
Z80 CPU ..
Bits and Bytes .
Hexadecimal . .
Memory contents and addresses
Instructions .- .
Flag register . .
Programs e e

Program Layout . .

Assembly level software,.

.

-

.

.

- o

. .

- .

How to progress - a suggestion

SECTION 1 - FRONT PANEL

HERERFRFRRFRPRPRPR
L] » L]
WOaO U s WN

.

Front Panel . . .
Summary of commands
Display description

Memory pointer commands

(M,I,R,U)

Reading and Modifying Memory . .

Modifying Registers
Modifying IO Perts

Utilities (X,P,S,G,N,H,Z,K,J)

Exits (CTRL-B, CTRL-C)

Calling the Front Panel

.

SECTION 2 - z80 INSTRUCTIONS

NN NN
. e

> w N

.

NN
H O ooJgo0 Wum

.10
2.12
2.13

N
[
=

Z80 Instruction set

8-Bit Loads (LD)
16-Bit Loads (LD)

Stack Loads (PUSH, POP)

. &

. .

8-Bit Arithmetic (ADD, ADC, SUB,
CPL, NEG, DAA)

16-Bit Arithmetic (ADD, ADC, SBC,

Jumps (JP) .

Relative Jumps (JR, DJNZ)
Subroutine instructions
(CALR)

Relative CALLs
Restart Calls (RST)

Logical Operations (AND, OR, XOR)

. o .

SBC, INC,

INC,

(cALL, éET) .

. o

.

-

Bit Operations (SET, RES, BIT, CCF, SCF)

Comparisons (CP)

vii

DEC)

DEC,

(oo NN o) BV, B U4 R, I S OV]

10

15
16
17
18
20
22
23
24
29
30

33
33
39
41

43
49
51
53
56
58
58
59
60
61

2.14 Rotates and Shifts (RL, RLC, RR, RRC, SLA, SRA,
SRL, RLA, RLCA, RRA, RRCA,

RLD, RRD) . & v & « o « o =« 62
2.15 General Instructions (NOP, HALT, EX, EXX) . . . 64
2.16 Input and Output (IN, OUT) e o e s e e e s s 65

2.17 Block Instructions (LDI, LDIR, LDD, LDDR,

CpPI, CPIR, CPD, CPDR,

INI, INIR, IND, INDR,

ouTi, OTIR, OUTD, OTDR). . . 67
2.18 Interrupts (DI, EI, RETI, RETN, IM@, IM1l, IM2) . 69

APPENDICES

]

APPENDIX 1.

TG

Z80 Instruction TablesS . ¢ o« « o o o o o o o o o o o o 71
(Sorted by Mnemonic, Sorted by Op-code, Operation
and Flag tables).

APPENDIX 2.

T

Sample Programs B - A |

(Programs viewed via the Front Panel, Programs
viewed from the screen)

BIBLIOGRAPHY 99

imemeEEEEEEEEEEEEEEE]

viij

INTRODUCTION

To many people low-level programming has the air of
confusion and mystery. Bits, bytes, hexadecimal and
masking etc. are just terms which increase the

complexity. The situation need not be so desperate!

INTRODUCTION
SEGSASSaNNEHE

It is assumed, or at least hoped, that the reader has some
knowledge of a high level programming language such as BASIC, FORTRAN,
etc. Writing programs at a high level consists of defining a problem
and then breaking it down into simple enough steps to be able to program
the steps using the computer language. For example to add two numbers
and print the result in a high level language we could supply a computer
with the following program:

LET FIRST_NUMBER := 23

LET SECOND_NUMBER := 47

LET RESULT := FIRST. _NUMBER+SECOND-NUMBER
PRINT RESULT

STOP

Programming at a low-level is similar but the steps involved need to
be much smaller. Instead of working with general names such as 'RESULT'
it is necessary to work with 'registers', 'accumulators', and ‘'memory
locations'. It is necessary therefore to know about the architecture
of the 'Central Processing Unit' (CPU) or 'Microprocessor Unit' (MPU)
so that e.g. register names and properties are known.

In this particular text the emphasis is on how to program the 380Z
microcomputer which uses the 'Z80' microprocessor unit. Although the
manual aims to enable a user to do this it is advisable to read relevant
literature on computer architecture and machine code programming. The
main problem with general texts is that it is impossible for them to
instruct somebody on how e.g. to put a character onto a screen or out
to a printer or in from a keyboard. Normally such routines as character
input and output are available through the machine operating system and
it is only necessary to know how to set up values for the routine and
then how to access the routine. In the case of the 380Z this is done
through the 'EMT' instructions and full details of these can be found in
the Firmware Reference Manual.

To ease your way in to low-level programming it is suggested that
you use the 'front panel' facility of the 380Z. Short programs, Or even
single instructions can be entered’ into memory and then executed. In this
way you should be able to see literally what the instruction does.

Before a note is made of how instructions look at machine level it

would be good to take a brief look at the 'architecture' of the Z80*
microprocessor and a few terms which will appear.

*Zilog trademark

THE Z80 CPU
ARGERERGRRE

The 380Z uses a member of the.-8080 family, the Z80, as its central
processor unit (CPU). The Z80 has six general purpose registers in the
main register set designated as B, C, D, E, H, and L. There is one
accumulator - A, and one flag register - F. This microprocessor unit
(MPU) is an 8-bit device and therefore each of the registers occupy an
8-bit byte. Very often the six general purpose registers are used in
pairs, i.e. BC, DE and HL, for 16-bit operations. The B register has a
special property in as much as it can be used for loop counting. 1In
addition to the above there is an alternate register set designated
A', B', C', D', E', F', H', and L' which can be manipulated in exactly
the same way as the main register set. There are a set of instruction
codes which enable the choice of either the A, F registers or the A', F'

Main Set Alternate Set SPECIAL REGISTERS
e ey p———————

Accumulator | Flags || Accumulator | Flags Program Counter PC

A F A' F! Stack Pointer SP
C B! c' Index Register IX

General B g
Purpose D E D' E' Index Register IY
H L H' L' Vector Memory
Interrupt | Refresh
I R

FIG. A) Z80-CPU Register Set
registers, and a choice of either the B, C, D, E, H, L registers or the
B', C', D', E', H', L' registers. This gives a combination of four options
on the registers to be used.

Also there are two 8-bit special purpose registers and four 16-bit
special purpose registers. In practice the two 8-bit special purpose
registers, I and R, are arranged as 8 bits and 7 bits respectively. The
I or 'interrupt vector' register is used, as the name implies, when
using interrupt levels and is not likely to be used by the beginner. The
R or 'refresh' register is not normally used by the programmer but is used
by the CPU to refresh 'dynamic' RAM (random-access memory) .

-

(i) Program Counter PC

As soon as a byte is fetched from memory the program counter is
incremented and so made to point to the next location in store.

For a four-byte instruction the program counter will be incremented
four times and will therefore automatically point to the next
instruction as the current instruction is being executed. Thus the
PC register is used as a pointer to the next byte of information

to be fetched from memory into the CPU.

it

(ii) Stack Pointer SP

The stack is used to store or exchange data and works on the
‘last-in-first-out' (LIFO) principal. Data is PUSHED onto the
stack and PULLED off the stack under program control. As data
is put onto the stack the SP register is decremented and as
data is retrieved from the stack the pointer is incremented.

(iii) Index Registers IX, IY

These are extremely useful special purpose registers which allow
the use of 'indexed' addressing within a program. The register
is set to a particular location in memory and by the use of
particular instructions can act as a pointer to memory within

a range of -1281p to +127 'bytes from the reference.

BITS AND BYTES
EEENSSaRRaNNs

As mentioned earlier the Z80-CPU is an 8-bit device. This means
that the CPU will work with 8-bit patterns. The contents of memory
locations for example are stored as a pattern of 8 bits, each 'bit' being
either a logical 1 or a logical #. When 8 bits are taken as a unit like
this they are commonly called a 'byte'. Another term commonly found in
use is the 'word' length. The word length of a CPU is the length in bits
of the 'patterns' it usually deals with. So the 2Z80-CPU has a word length
of 8 bits, which is 1 byte.

To add to the confusion, 1024 bytes of information give lKbytes,
(note: not 19@@.). The length of a memory is usually measured in kilobytes.

HEXADECIMAL
o

As the name suggests, this is base sixteen arithmetic. The numbers
from @ to fifteen are represented by:

®123456789ABCDETF

In binary the number of bits needed to specify 16 variations is 4,
in other words a pattern of four bits can be represented by the appropriate
HEX value. It follows then that two HEX digits are required to specify an
8-bit pattern, four HEX digits a l6-bit pattern and so on. Where doubt may
arise when reading and writing HEX numbers, they should always start with
a digit and end with H, e.qg.

5H 5CH - @AFH

MEMORY CONTENTS AND ADDRESSES
C]

It will be noticed that any of the special purpose registers which
store pointers to memory (i.e. addresses), e.g. PC register, are 16-bit
registers. Suppose that the addresses were only 8 bits long like the
memory contents. This means that the highest memory address would be
@FFH = 28 - 1 = 255 (decimal); not very high. To enable the MPU to
address an adequate amount of memory, l6-bit addresses are used. This

means that the highest address (withoutpaging techniques) is:
OFFFFH = 2'® - 1 = 65 535 (decimal).
This provides then the equivalent of B4Kbytes of memory. Much better.

Digressing a little, if the contents of one memory location was 3EH
(i.e. 3E in hex.), it may not be clear whether this is an instruction code
or data, and if data what kind of data. For simplicity suppose that if it
were data then this would be the ASCII code in hex for the appropriate
character. Above it is seen that with 8 bits, 25610 patterns are possible.
The ASCII set only requires 12819 possibilities, thus this can be
accommodated easily. With 8 bits it is also possible to provide 25610
different instruction codes straight off for the CPU. If two-byte
instruction codes are implemented the choice is increased by a factor of
256109 . If now two address bytes are used on top of the selection code the
number of possibilities available far ‘exceeds the range required. For these
reasons alone a data word size of 1 byte (8 bits) is perfectly adequate. In
practice the instructions occupy from one to four bytes. Owing to the large
choice available many of the instructions are in the 'implied' mode. This
means that the source and destination of the data is implied by the instruc-
tion code, e.qg.

CODE (HEX) MNEMONIC DESCRIPTION

A2 AND D Take the 8-bit pattern in the A register
and do a bit by bit logical AND with the
8-bit pattern in the D register and put
the result into the A register.

INSTRUCTIONS
fo oo

The Z80 microprocessor has 158 different instructions in its repertoire,
and an additional two pseudo-instructions are implemented via the 380Z monitor
EMTs. Both 8-bit and l6-bit arithmetic is possible. With 8-bit
arithmetic, one operand and the result is always in the accumulator. The
arithmetic operations available with 8-bits in this category are addition
and subtraction only, multiplication and division must be done by software
routines. There are, however, two special arithmetic operations which can
be used on any register, these being 'increment' and 'decrement'. Boolean
operations are also gvailable in this category, these being, AND, OR,
EXCLUSIVE-OR, NEGATE, and COMPLEMENT. Note that 'negate' provides the two's
complement and 'complement' provides the one's complement - both operations
being performed on the accumulator A.

Only limited arithmetic operations are permitted with 16-bits and no
boolean operations are available. Unlike adding and subtracting with or
without the carry in 8-bit arithmetic, 16-bit arithmetic does not give the
option of subtraction without the carry, i.e.

SIZE MNEMONICS

_apeanow PO
8-bit ADD, ADC, SUB, SBC
16-bit - ADD, ADC, SBC

Note that 'increment' and 'decrement' are permitted with 16-bit registers.

Other instructions are concerned with 8-bit loads, l6-bit loads,
Jumps -Calls/Returns, and Rotates/Shifts, and other more specialised operations.

FLAG REGISTER
[

As mentioned previously, the Z80-CPU used in the 380Z system,
contains an 8-bit flag register. All the flags available in the CPU can
be used when programming or debugging at assembly level with the 380Z. These
flags are set in the MPU when most arithmetic and logical operations are
performed. They are not usually affected by load instructions except in
the more rare instructions such as LD A,R and LDIR. Note that any instruc-
tion which does not affect the flags may be interspersed freely between the
setting of a flag and inspecting it.

Six of the eight bits in the flag register (F) are used. The 'N'
and 'H' flags are used in Binary-Coded-Decimal (BCD) arithmetic and are
not likely to be used by the beginner.

S|Z EII P/V|N]|C
bit 7 6 5 4 3 2 1

FIG.B) FLAG REGISTER BIT REPRESENTATION

The remaining flags are:

Sign - set if bit 7 of the result is set (i.e. the number is negative)
Zerxro set if the result is zero
P/V set if the parity of a logical operation is even, or
set if the result of arithmetic ‘causes overflow
Carry - set if the result of arithmetic or logic causes a bit
to flow out of the accumulator

There are only two instructions specifically provideé*tg manipulate the flags:

SCF - _set the carry flag
CCF - complement the carry flag

In addition, the following instructions are useful:
AND A - clears the carry flag but does not affect 'A'

XOR A - sets 'A' to zero and clears all but the P/V flag
and the Z flag.

Section 2 of this text covers the instruction set of the 280 in detail
and indicates how, and by what instructions, the flags are affected.
The table below gives the 'flag notation' which will be used:

FLAG NOTATION MEANING

Flag not affected
Flag reset

Flag set

Flag unknown

Flag is affected according to the result of the
operation

- X + O

IFF Content of the interrupt enable flip-flop
(IFF) is copied into the P/V flag

PROGRAMS
BEENSNSS

Computers work with patterns of Os and 1ls The Z80 MPU is an eight
bit device and therefore works essentially with patterns 8 bits wide.
The program counter collects the contents of memory locations and the
MPU operates accordingly on the pattern collected. With this in mind
suppose we have the following contents in memory:

23a4 3C)
N

address contents

The pattern '3C' could be data or it could be an instruction. It is
important to realise this when programming at machine level. If the
program counter is set in the middle of data (e.g. a series of characters
representing a message) and then the 280 allowed to execute the code then
the characters will be interpreted as instructions and anything could
happen.

So far the patterns of Os and ls have been represented by hexa-
decimal digits, mainly to improve the readability (and save on space
when writing the code on paper!). Every instruction to the Z80 MPU
has a particular pattern and this could be up to 4 bytes long. This
means that the length of a pattern is variable (i.e. 1 to 4 bytes).

In the above example the pattern is only one byte long and if it is an
instruction then it corresponds to 'take the pattern in the accumulator,
treat it as a binary number , and increment that number by 1'. Obviously
that last descriptionis a bit long and therefore 'mnemonics' areused

to represent the action. In this case it is 'INC A' (INCrement Accumulator).
When programming using the 'front panel' it is necessary to enter the
hexadecimal representations. When an 'Assembler' is used it is possible

to write the program using the mnemonics, which are even easier to read

and follow, and the Assembler will work out the necessary machine code.,

Just remember that there are two ways of getting the Program into the

3802:

i) machine code - hexadecimal representation,

ii) assembler code - mnemonic representation.

Much more will be said about the Assembler and assembly code later on

but it

may be advantageous to have a look at a very short program to see

how things are related.

Take a look at the following code:

H
E:Prosram that takes twa small numbers from two
§:1oca¢ions and adds them, leaving the result in
addresses machine§ :the accumulator.
code £° o ,
0100 EORG O100H mnemonics
-=i mnnnnnnansninnm llllll‘_ ; (
E Q100 2A0201 §START= LD A, (NUM1) sLoad acc. with cont. of “NUMLI‘.
g 0103 47 E LD B.A sStore value in “"B” regsister.
E 0104 ZAOY01 £ LD A, (NUM2) sboad acc. with coant. of “NUM27,
g 0107 30 g ADD A,B 5Add the two values.
: 0108 02 ENUML: +2 sData.
§ 0107 04 £ NUMZ: +4
§ § source code
g g
illlll\;lg&:lélgllIIIIIIIIIIIIIIlllllllllllll?llllllllIIllIIIIllllllllIIlllmlllllllllmmlllIllmlllmlllllllllllllllllﬂllllllllllllllllllllllllmlllllll
i) 'ORG' is merely an instruction to the assembler to say 'start

ii)

assembling the code at this memory address'. Note that the first

address is therefore at @l@@H.

The 380Z is an eight bit computer and therefore each memory location
can only store an eight bit code. The first instruction takes three
bytes and therefore uses three locations. Owing to this the second
instruction starts in the fourth location from the start. This means
that if the program was to be entered using the 'Front Panel' the
following would be stored:

Address H Contents

mnlmmmmmmmulm!umnmmmmlmm
#1009 H 3a
@141 £ @8
@1g2 H @1
@193 H 47
F1g4 H 3a
P15 g @9
@16 5 @1
PLF7 H 8¢
@1g8 E @2
@199 H @4

iii)

A peculiarity will be seen about the way addresses are stored for
instructions. Take 'LD A, (NUMl)' as an example. The instruction

has three bytes, one for the instruction itself (3a) and two for

the address (NUMl). Now 'NUML'=location (#1@#8H) but in the

instruction the 'high' byte and the 'low' byte are swapped over.

This is always the case with Z80 code and must be carefully adhered

to when using the 'Front Panel' to enter programs. When the assembler
works out the machine code from the mnemonics the SWop is automatically

carried out and so mistakes cannot be so easily made. Note also that

this means the following is also true:
LD A,(12a8H) = 3A A8 12

iv) There is no way of stopping this program if it were allowed to run
freely. The program could only be run by using the 'single step'
facility (see later) of the Front Panel' and watching the effects of
the instructions.

v) The 'END' instruction is nothing to do with the program itself but
is another directive to the assembler to say that 'this is the end
of the code'.

vi) 'Reading' from a memory location or an MPU register does not destroy

the contents of that bit of storage. For example the value of +2
will not disappear from location @l@8H by putting it into the
accumulator. 'Reading' from one location to another is really
'copying'.

PROGRAM LAYOUT
SSRGS

During the early stages of machine level programming the importance
of layout will not appear so relevant because the programs will not be
very long. Once the essentials are grasped however the Assembler will
start to be used and the programs will become more detailed. When this
happens layout is of the utmost importance. There as no hard and fast
rules about what should go where but one thing is for sure - absolutely
lace the code with comments. An instruction may be placed in the code
for one of a number of reasons. For example, 'XOR A' (exclusively-OR
accumulator with itself) will unset the carry flag and set the contents
of the accumulator to Zero, amongst other things. It is important that
a comment exists to say what effect is primarily desired from the
instruction.

10

ASSEMBLY LEVEL SOFTWARE

Present documentation by RML on TXED,ZAS/M should be used in conjunction
with this manual. It will be helpful to take a closer look at the overall
operation of assembler work, and to this end consider again the figure on p.9.

The small block on the left is the machine code and is the form in which
the program would be entered using say the front panel. This machine
code is produced by the 'Assembler' which uses the 'source code' as its
input. The source code is all that which is inside the large block on
the right. Once the program or program segment has been written it can
be entered into the computer using the RML Text Editor (TXED), and this
can then be saved on tape or disc as a source code file. Again this

is just the information in the block on the right. The RML Assembler
(ZAS/2ZASM) can then use this file to produce two new files, a 'Listing
file' and a 'Hex file'. A listing file, if printed, would look like the
above two blocks joinéd together. A 'Hex file' is basically just a
coded form of the machine code, and can be printed.

So far then we have the following situation:

r?"qlv

Written program

L

TEXT SOURCE
______.l e
EDITOR CODE

ASSEMBLER

-t

i)HEX FILE (OR AS A LISTING)
ii) MACHINE CODE

LISTING
(POSSIBLY AS A FILE)
(OR BOTH)

Obviously the files can be produced m a cassette tape or a disc
depending on what kind of system is being used. Note especially that a
distinction has been made between the hex file and the machine code. First
take a look at the cassette assembler. In this assembler a hex file can
be stored or listed and is just a character representation of the machine
code. This form is only really useful for producing machine code listings
or for sending a copy of the machine code between computers over trans-
mission lines. It is possible as will be seen to get the assembler to
produce a machine code file. This is not 'listable', at least notin the
sense that the listing would be intelligible. It is the machine runnable
form and can be loaded and run in the same way as BASIC or TXED. The

11

difference is important to realise. The disc version of the assembler
(2ASM) is slightly different. In this case it is not possible to get the
assembler to produce the machine code file, only the hex file. A utility
program called 'LOAD' is then used which takes the hex file as its input
and produces a machine code file. Note that with all disc machine-runnable
files the 'extension' of this file will be '.COM'.

HOW TO PROGRESS - A SUGGESTION

SSRGS

Having got this far it should be possible to start looking at the
instruction set of the 280 MpPU, keeping in mind the standard Zilog
mnemonics for the codes. Chapter 2 deals with the standard Z80 instructions.
In order to write useful programs at machine level it will also be necessary
to understand the special 380Z monitor routine instructions (e.g. for input/
output). Details of these can be found in the Firmware Reference Manual.
Before much more is done however it may be wise to first come to grips with
using the 380Z Front Panel facility. This is an essential and powerful tool
when programming the 380Z at machine level. Learning even a subset of the
features will be a major advantage.

Once familiarity is achieved with the front panel a close look can be
made at the programming side. Appendix 2 contains documented examples and
these can be used to gradually get to know the instruction set. Not every
Z80 instruction is covered but hopefully enough is included to enable the
reader to explore the other instructions as-and when it becomes necessary.
The chapters on the instruction set etc. can be consulted if a more detailed
look at the particular instruction types is desired.

As familiarity increases the Assembler will (or should!) start to be
used, probably (and advisably) using the Text Editor to produce the source

program.

It is hoped that the Appendices will provide quick reference guides to
help when writing machine level programs of your own.

moEEEEEEEEEEEEEEEEE

12

SECTION 1

13

<<
—

FRONT PANEL
C oot cuet el

Other than working with the 380Z at a high level, e.g. using
BASIC, there are two other modes possible. One is the 'monitor'
mode and the other, the 'front panel' mode. When the 380Z is first
switched on it is automatically in monitor mode, where the command
prompt is a right-arrow (). This indicates that the user is
communicating with the cassette operating system. With discs the
bootstrap (B) monitor command can be executed which, provided the
'Operating System' disc is in unit 'A', will load the disc
operating system. This will output a short message followed by a
new prompt: A>. The 'A' before the arrow indicates the disc unit
which will be accessed by default. In either of the above states
the front panel mode will be entered on receipt of a 'CTRL-F',
and will appear similar to:

>PC E6AC C9 CD AD EO 18 F3 F5 3A
SP FFBE 9E E6 AC E6 3F E4 FF 00
IY 01D5 80 C3 OF 04 00 FF EE 00
IX 7BFA 32 6F CO FF Ol OE OF 80
HL EEDO 18 00 FO BA CO F5 00 Ol
DE FFO4 04 00 F5 BE Cl F5 AC E6
BC 0000 AC E6 00 00 C3 2F E4 00
AF 06FF SZ H VNC 1

IO 0000 FF FF FF FF FF FF FF FF

2
E6A0 C9 E6A8 C9 E6BO OC E6B8 0OC
E6Al F7 E6A9 CD E6Bl1 FF E6B9 FF

E6A2 21 E6AA AD E6B2 B7 E6BA Fl
E6A3 FE E6AB EO E6B3 28 E6BB FE

E6A4 06 >E6AC 18< E6B4 05 E6BC 01
E6A5 28 E6AD F3 E6B5 3E E6BD CO
E6A6 02 E6AE F5 E6B6 17 E6BE 3A
E6A7 B7 E6AF 3A E6B7 32 E6BF 0OC

FIG 1.1 380Z Front Panel

This 'front panel' is software written and controlled, providing
an excellent mechanism for the input and debugging of machine level
programs. Commands and delimiters are combined to form capabilities
for data input, single stepping, block memory shifts, flag checking,
register updating and so on. Useful utilities also exist for
pattern searching and hexadecimal calculations.

Note that while in this mode the scroller only operates on the
pottom four lines, and that the command prompt is now an exclamation
mark (!).

15

(Memory Pointer)
M
I
R
U

PANEL COMMANDS

ACTION

Set memory pointer to given address

Set memory pointer from memory contents (absolute)
Set memory pointer from memory contents (relative)
Set memory pointer from Program Counter (PC)

(Memory Pointer Delimiters)

SPACE
CARRIAGE RETURN

/
LINE FEED

(Register Pointer)

.

<
>

4

(Utilities)

UANDZOWnWx

(Exit)
CTRL-B
CTRL-C

Remain at present location -
Increment memory pointer
Decrement memory pointer

Move back memory pointer by eight
Advance memory pointer by eight

Increment Register Pointer
Increment I/0 Pointer
Decrement I/O Pointer
Set I/O port to given value

Switch Register Display to Alternate set

Fill and Test Memory between limits

Shift Memory Content

Get first occurrence of specified pattern of bytes

Find next occurrence of pattern

Hexadecimal Calculator

Execute single instruction; 'single step'.

Continue program execution

Set Program Counter to specified address and
continue execution.

Exit to COS monitor
Exit to CP/M

16

DISPLAY DESCRIPTION

There are three main areas for the panel, as shown below. At the
top is a block of memory relating to the register. 1In the middle is a
line display for the I/O ports, and at the bottom is a block of 32
locations plus associated contents of actual memory.

>PC E6AC C9 CD AD EO 18 F3 F5 3A

SP FFBE 9E E6 AC E6 3F E4 FF 00
IY 01D5 80 C3 OF 04 00 FF EE 00
IX 7BFA 32 6F CO FF 01 OE OF 80
HL EEDO 18 00 FO BA CO F5 00 0l
DE FF04 04 00 F5 BE Cl F5 AC E6
BC 0000 AC E6 00 00 C3 2F E4 00
AF 06FF SZ H VNC T

I0 0000 FF FF FF FF FF FF FF FF
T
E6AO0 C9 E6A8 C9 E6BO 0OC E6B8 0OC
E6Al1 F7 E6A9 CD E6Bl1 FF E6B9 FF -
E6A2 21 E6AA AD E6B2 B7 E6BA Fl
E6A3 FE E6AB EO E6B3 28 E6BB FE
E6A4 06 >E6AC 18< E6B4 05 E6BC 01
E6AS5 28 E6AD F3 E6B5 3E E6BD CO
E6A6 02 E6AE F5 E6B6 17 E6BE 3A
E6A7 B7 §6AF 3A E6B7 32 E6BF 0OC

FIG 1.2 - 380Z Front Panel

Consider first the top region, the register display area. The
registers are denoted by their standard Zilog mnemonics: PC, SP, IY,
IX, HL, DE, BC and AF; referring to the Program Counter, Stack Pointer,
two Index Registers, three 16-bit registers, Accumulator and Flag
Register. Immediately to the right of these mnemonics are four-digit
hexadecimal numbers. These numbers display the contents of the
registers. To the right again, of all but the A and F registers, is a
row of eight two-digit hexadecimal numbers. These numbers represent
the memory contents as addressed by the contents of the registers. The
register pointer, at the foot of the fourth column from the left, points
to the actual memory contents as addressed by the register. To the left
of this byte are four bytes of memory directly below the register content,
and to the right are three bytes of memory directly above the register
content.

In the case of the 'AF' row this would not be very meaningful and
so the content of the flag register is displayed using the letters: S,
Z, H, V, N, and C to indicate the presence of any of these flags. For
example, the presence of the C means that the Carry flag has been set.
Note that these letters are the standard symbols used by Ziloc, with
the letter V acting for the Zilog P/V symbol.

Consider now the middle region, the I/O port display area. This

line display is associated with the upper register region in as much as
the register pointer to the left of the mnemonics, initially pointing

17

to the Program Counter, can be made to point to this row.

The lower part of the display, the memory location display, is
completely separate from the above two regions. It consists of a
block of 32 memory location addresses together with their associated
contents. Approximately half way down the second block of eight are
the memory pointers. When modifying or inserting memory content it
is at the location pointed to by these pointers that the memory con-
tent can be changed.

MEMORY POINTER COMMANDS (M, I, R, U)
O i o oo oot o o oo o o o o o 5 i 'y s o) o oy i) G o G ™

These four commands provide a mechanism for aligning the memory
pointer on the front panel to specific locations.

1.3.1 M

Format: e.g. M > 21c4)

Typing M as a command to the front panel prompt (!) will result in
the command being echoed plus a prompt () for a hexadecimal value. This
value should be a four-digit address. If less than four digits are entered
then leading zeroes will be assumed:

e.g. 1AF = P1AF

If more than four digits are entered then the digits displayed will
be shifted to the left displaying the last four digits entered, this being
the address used for the move. (On some machines you may have to DELETE).

On entering the address and pressing the RETURN key the memory loca-
tion display will adjust itself so that the memory pointer is aligned with
the location specified.

>PC 0203 00 C3 09 02 CD E9 03 C3
SP FFBE 9E E6 AC E6 3F E4 FF 00
IY 01D5 80 C3 OF 04 00 FF EE 00
IX 7B0O0 7F C8 F7 01 C9 CD C8 7B
HL EEDO 18 00 FO BA CO F5 00 Ol
DE FF04 04 00 F5 BE Cl F5 AC Eb6
BC 0000 03 02 00 00 C3 2F E4 00
AF 0642 2 N T

>PC 0203 00 C3 09 02 CD E9 03 C3
SP FFBE 9E E6 AC E6 3F E4 FF 00
IY 01D5 80 C3 OF 04 00 FF EE 00
IX 7B0O0 7F C8 F7 01 C9 CD C8 7B
HL EEDO 18 00 FO BA CO F5 00 Ol
DE FFO04 04 00 F5 BE Cl1 F5 A2 13
BC 0000 03 02 00 00 C3 2F E4 00
AF 0642 Z N T

IO 0000 FF FF FF FF FF FF FF FF
T
E6A0 C9 E6A8 C9 E6BO 0OC E6B8 0OC
E6Al F7 E6A9 CD E6Bl FF E6BY9 FF
E6A2 21 = E6AA AD E6B2 B7 E6BA Fl
E6A3 FE E6AB EO E6B3 28 E6BB FE
E6A4 06 >E6AC 18< E6B4 05 E6BC 01
E6A5 28 E6AD F3 E6B5 3E E6BD CO

E6A6 02 E6AE F5 E6B6 17 E6BE 3A
E6A7 B7 E6AF 3A E6B7 32 E6BF 0C

IO 0000 FF FF FF FF FF FF FF FF
T
1396 F5 139E 3E 1346 Cl1 13AE FA
1397 1E 139F 2C 13A7 08 13AF C9
1398 00 13A0 CD 13A8 4F 13BO EB
1399 CD 13A1 2D 13A9 ED 13B1 3E
139A OF >13A2 05< 13AA 78 13B2 29
139B 09 13A3 CD 13AB AB 13B3 CD
139C 28 13A4 C9 13AC A0 13B4 2D
139D 08 13A5 13 13AD 28 13B5 05

innunnuEnunERnnnaNNnnEanunRREnnn s NN nm

FIG. 1.3 - EFFECT of 'M' COMMAND

18

The example above (Fig. 1.3) shows the effect of the command:
M > E6AC, on the original display.

1.3.2 1

Format: ! I

This command sets the memory pointer to the address as specified
by the memory contents presently pointed to. Note that it is only
necessary to enter the command in response to the prompt (!), NO RETURN
is required.

Suppose the memory display around the pointer is as follows:

E@4A F5
E@4B CD
— EQ4C 56 -—
EQ4D EQ
EQ4E D5

On the 'I' command the byte pointed to by the memory pointer and the
following byte (56,E®) will be taken as the absolute address to move to,
in standard machine format which is LSB first followed by MSB; which in
this case would give an address of E@56. The memory display around the
pointer would then become:

»

Ep54 E3
E@55 C9
— E@56 D5<—
E@57 21
Ep58 @8
1.3.3 R

Format: ! R

This command is similar in operation to the 'I' command and sets
the memory pointer to the relative address as specified by the memory
contents presently pointed to. The result of the relative move will be
exactly the same as that under normal program execution. In view of
this the 'R' command is an extremely useful tool for testing relative
calls and jumps in user programs.

Suppose the memory contents around the pointer are as follows:

E69A 28
—E69B FCe
E69C EF

On the 'R' command the byte pointed to by the memory pointer will be
taken as the relative position of the location to move to. The code
FC is interpreted as -4 (decimal) and therefore the memory contents
around the pointer will now be: ‘

19

E697
— E698
EE99
E69A

(03°)
F7 -
1D
28

Note that the pointer has apparently only skipped backwards three

locations and not the four which were specified.

normal program execution when an instruction is fetched, the program
counter (PC) is automatically advanced to the first byte of the next

This is because under

instruction. On executing a relative jump this has to be taken into account.
1.3.4 U
S-S

Format: U

This is another command (like I and R) which sets the memory pointer
by reference to an already existing location, this time the Program Counter.
The figure below (Fig.l.4) shows the effect of the 'U' command. 1In the
initial state the memory pointer is aligned to some particular location in
memory, and the program counter (PC) is pointing to location E6AC. On

execution of the 'U' command the memory display is updated so that the
memory pointer now aligns itself with the address given by the program

counter.

>PC E6AC C9 CD AD EO 18 F3 F5 3A = >PC E6AC C9 CD AD EO 18 F3 F5 3A

SP FFBE 9E E6 AC E6 3F E4 FF 00 : SP FFBE 9E E6 AC E6 3F E4 FF 00

Iy 01D5 80 C3 OF 04 00 FF EE 00 IY 01D5 80 C3 OF 04 00 FF EE 00

IX 7B00 7F C8 F7 01 C9 CD C8 7B s IX 7BO0 7F C8 F7 01 C9 CD C8 7B

HL EEDO 18 00 FO BA CO F5 00 01 g HL EEDO 18 00 FO BA CO F5 00 01

DE FFO04 04 00 F5 BE Cl F5 35 20 E DE FFO4 04 00 F5 BE Cl F5 AC E6

BC 0000 AC E6 00 00 C3 2F E4 00 BC 0000 AC E6 00 00 C3 2F E4 00

AF 0642 2Z N T AF 0642 Z N T

Io 0000 FF FF FF FF FI‘T‘ FF FF FF £ 100000 FF FF FF FF FF FF FF FF
2029 45 2031 4E 2039 47 2041 55 ; E6AO0 C9 E6A8 C9 ;6BO oc E6B8
202A DO 2032 C4 203A CE 2042 53 £ E6Al F7 E6A9 CD E6Bl FF E6B9
202B AB 2033 4F 203B 49 2043 D2 = EgeA2 21 E6AA AD E6B2 B7 E6BA
202C AD 2034 D2 203C 4E 2044 46 g E6A3 FE E6AB EO E6B3 28 E6BB
202D AA >2035 BE< 203D D4 2045 52 £ EeA4 06 SE6AC 18< E6B4 05 E6BC
202E AF 2036 BD 203E 41 2046 C5 ; E6A5 28 E6AD F3 E6B5 3E E6BD
202F DE 2037 BC 203F 42 2047 49 E Ega6 02 E6AE F5 E6RB6 17 E6BE
2030 41 2038 53 2040 D3 2048 4E E E6A7 B7 E6AF 3A E6B7 32 E6BF

FIG. 1.4 - EFFECT OF 'U' COMMAND

is extremely useful in that it updates the memory display quickly, to

When 'single stepping' through machine level programs this command

correspond with the program counter movements.

given by:

The memory pointer delimiters, as outlined in the summary are

20

0oc
FF
Fl

01
co
3A
oc

SPACE
CARRIAGE RETURN

- (minus)
/ (backslash)
LINE FEED

and used to read and modify local blocks of memory. To read memory, i.e.
look at the contents given by the display, the delimiters are used on
their own. To modify memory locations the delimiters are used in con-
junction with a two-digit hexadecimal value, which is to be the new
contents of the memory location pointed to by the memory pointer.

1.4.1 Reading

When purely examining the contents of local memory the delimiters
are used on their own in response to the prompt (!). They are not echoed
back in any way although the four-line scroller will scroll up at the
bottom of the display. Used in this mode they have the following effects:

SPACE

Remain at present location. Do nothing.

CARRIAGE RETURN

Increment the memory pointer. If initially
at address ED73; will now point to ED74.

- = Decrement the memory pointer. If initially
at address EC5A; will now point to EC59.

/ = Move the memory pointer backwards eight
’ locations. If initially at address ED1@;
will now point to ED@8.

LINE FEED

Advance the memory pointer by eight locations.
If initially at address EC2@; will now point
to EC28.

1.4.2 Modifying

When modifying memory locations the above delimiters are used together
with a two-digit hexadecimal value. If only one digit is entered as the
value then a leading zero is assumed:

e.g. 3 < delimiter> = @3 < delimiter>

If more than two digits are entered then the last two digits entered will
be taken as the value.

Format: e.g. ! 3B <delimiter >

To modify the memory content of the location pointed to by the memory
point the hexadecimal value must be entered followed by any one of the
delimiters, in response to the prompt (!). The value specified will be
entered into the location originally pointed to and then the memory pointer
will be adjusted as defined by the delimiter.

For example, suppose that the command: 4F < carriage return™ had
been input with the initial memory display around the memory pointer being:

21

21A3 CD

21a4 34
— 21A5 QP <—
21186 o0

The initial location pointed to (21AS5) would have a new content
(4F) entered and then the memory pointer would be modified accordingly;
in this case incremented by one location. The memory display around the
pointer would therefore become:

2124 34
21A5 4F
-~ 21A6 PP <
21n7 o0

Note that if an attempt is made to modify the contents of ROM (Read-Only-
Memory) then although the command will be accepted and the effect of the
delimiter exercised, the memory modification will be nullified.

1.5 Modifying Registers

A R A A X

First of all, another look at the front panel. In the upper region
of the display, the Register display, to the left of the register mnemonic
for the Program Counter (PC) there is a pointer. By using the register
pointer delimiter '.' (full stop), this pointer can be moved down to point
to any of the register mnemonics (including the IO display).

>PC E6AC C9 CD AD EO 18 F3 F5 3A
SP FFBE 9E E6 AC E6 3F E4 FF 00

IY 01D5 80 C3 OF 04 00 FF EE 00 —pC pC pC
IX 7B00 7F C8 F7 01 C9 CD C8 7B sp —SP Sp
HL EEDO 18 00 FO BA CO F5 00 01 1Y Iy - IY
DE FF04 04 00 F5 BE Cl F5 AC E6 X X X On each input
BC 0000 AC E6 00 00 C3 2F E4 00 of '.' the
AF 0642 Z N T HL HL HL register pointer
DE DE DE moves down one
IO 0000 FF FF FF FF FF FF FF FF = B Be row.
T AF AF AF
E6A0 C9 E6A8 C9 E6BO 0OC E6B8 0OC 10 10 10
E6Al F7 E6A9 CD E6Bl1 FF E6B9 FF
E6A2 21 E6AA AD E6B2 B7 E6BA Fl
E6A3 FE E6AB EO E6B3 28 E6BB FE
E6A4 06 >E6AC 18< E6B4 05 E6BC 01
E6A5 28 E6AD F3 E6B5 3E E6BD CO
E6A6 02 E6AE F5 E6B6 17 E6BE 3A
E6A7 B7 E6AF 3A E6B7 32 E6BF 0OC
(a) 380z Front Panel (b) Successive effects of '.' command
FIG 1.5 FRONT PANEL AND EFFECT OF '.' COMMAND

22

On reaching the IO display, another '.' input will set the register
pointer back to the program counter (PC).

The purpose in being able to move the register pointer around in this
way is that it is the register pointed to which can be modified. To modify

the register pointed to a four-digit hexadecimal value is expected plus the
'.' delimiter.

Format: e.g. !92¢3 <.>

Normal hexadecimal input rules apply here, meaning that leading zeroes
are assumed if necessary and the last four digits will be accepted if more
than four are entered.

A point to watch out for here is that if the wrong delimiter is used,
e.g. < carriage return -, then it will be a memory location which will be
altered - not the register. It will be noticed that the use of the register
pointer delimiter in this mode does not result in the register pointer being
moved. Hence the delimiter has two roles.

(a) When used alone it specifies a shift of the register pointer;
(b) When used together with a hexadecimal value it specifies
a modification to the appropriate register.

As soon as the delimiter is entered the hexadecimal value given will
be entered into the register pointed to. Note that the contents of the
eight-byte row displayed to the right of the register content display also
changes to coincide with the memory locations denoted by the new content of
the register. 1In the case of the AF register note that e.g. @@FF will place
'FF' into the flag register and hence display all the flags available.

1.6 Modifying IO Ports
o

The Input/Output ports are addressed using the delimiters given
in the summary at the beginning of this chapter. The 'contents'
display of the ports will not alter however unless particular ports
are explicitly addressed. It is unusual for the beginner to use these
ports and they are normally only used when dealing with control
applications.

23

Nine routines exist within the 'front panel' cf the 380Z and are
designed specifically to ease the formation and debugging ©f machine
level programs.

1.7.1 X

Format: ! X
This command will enable the alternate set of registers, available

within the Z80 microprocessor, to be displayed in place of the original
set.

>PC E6AC C9 CD AD EO 18 F3 F5 3A

SP FFBE 9E E6 AC E6 3F E4 FF 00
IY 01D5 80 C3 OF 04 00 FF EE 00
IX 7BO0 7F C8 F7 01 C9 CD C8 7B
HL‘ 2A30 00 00 20 85 00 58 00 00
DE‘ 0000 AC E6 00 00 C3 2F E4 00
BC’ 8518 FF FF FF FF FF FF FF FF
AF” 0C95 S HVC T

10 0000 FF FF FF FF FF FF FF FF
T

1497 D6 149F 21 14A7 FE 14AF CD
1498 03 14A0 00 14A8 1A 14B0 A3
1499 Fl 14A1 01 14A9 37 14B1 14
149A C3 14A2 C9 14AA C8 14B2 DO
149B 69 >14A3 CD< 14AB B7 14B3 FE
149C 05 14A4 E5 14AC 28 14B4 OA
149D 36 14A5 26 14AD F5 14B5 28
149E 00 14A6 D8 14AE C9 14B6 04

FIG. 1.6 - ALTERNATE REGISTER SET

Each successive 'X' command input to the prompt (!) will exchange
the set of registers displayed. Note that when the alternate set is
being displayed each of them (HL', DE', BC', AF') is flagged with an
apostrophe. The set of registers displayed by the front panel is the
set which will be used in the running of a program, so it is important

before running programs from the front panel that the correct set is
available.

1.7.2 P
reamemmca—ee
Format: e.g. P
FIRST > 0200 N
LAST > 9209)
WITH >’§E)

24

>PC
SP
1Y
IX
HL
DE
BC
AF

I0

O1F4

01F5 00 01FD 00 0205 03 020D 00
01F6 00 O1FE 00 0206 C3 020E 04

01F7 00 O1FF 00 0207 03 020F F7

0l1F8 00 >0200 C3< 0208 04 0210 22
01F9 00 0201 09 0209 CD 0211 FE

O1FA 00 0202 02 020A E9 0212 03
O1FB 00 0203 CD 020B 03 0213 28

Two functions are carried out when the command 'P' is entered
in response to the command prompt (!). A section of memory is 'filled'
and then 'tested'. On entry of the command the routine prompts for the
first and last addresses to be filled. It then prompts for the two-digit
hexadecimal value which is to be entered into the locations. An ?ERR?
message will be output and a return made to the Cassette Operating System
(prompt -»), if the final address is less than the first address.

On entering the 'fill with' byte, all locations between the specified

limits, inclusive, will be filled with this byte. This command has no
effect on the memory pointer whatsoever.

As the memory is being filled, it is also read back to check that
the specified change has taken place. If an error is detected then the
?ERR? message is output and the front panel re-entered with the memory
pointer aligned to the location causing the error. To continue the fill
and test routine at the next byte the 'K' command can be entered, or an
exit to either of the operating systems made (CTRL-B,CTRL-C). This
facility does provide a very convenient mechanism for testing memory
integrity, memory type (RAM/ROM), or end of user memory. Note that non-
existent memory reads as FF(hex.).

E6AC C9 CD AD EO 18 F3 F5 3A
FFBE 9E E6 AC E6 3F E4 FF 00
01D5 80 C3 OF 04 00 FF EE 00
7B00 7F C8 F7 01 C9 CD C8 7B
2A30 00 00 20 85 00 58 00 00
0000 AC E6 00 00 C3 2F E4 00
8518 FF FF FF FF FF FF FF FF

0C95 S HVC T AF 0642 2Z N T

0000 FF FF FF FF FF FF FF FF
T

00 01FC 00 0204 E9 020C -C3

I0 0000 FF ¥F FF FF FF FF FF FF
T
01F4 00 01FC 00 0204 AF
01F5 00 01FD 00 0205 AF
01F6 00 O1FE 00 0206 AF
01F7 00 O1FF 00 0207 AF
0l1F8 00 >0200 AF< 0208 AF
01F9 00 0201 AF 0209 AF
O1FA 00 0202 AF 020A E9

01FB 00 0203 AF 020B 03

a) Initial state (b) After format example (above)
entered

FIG 1.7 - EFFECT OF 'P' COMMAND (e.g.)

25

>PC E6AC C9 CD AD EO 18 F3 F5 3A
SP FFBE 9E E6 AC E6 3F E4 FF 00
IY O0ID5 80 C3 OF 04 00 FF EE 00
IX 7B0O0 7F C8 F7 01 C9 CD C8 7B
HL EEDO 18 00 FO BA CO F5 00 01
DE FF04 04 00 F5 BE Cl1 F5 00 02
BC 0000 AC E6 00 00 C3 2F E4 00

020C

020D
020E
020F
0210
0211
0212

0213

c3

00
04
F7
22
FE
03

28

>PC

SP
IY

IX
HL
DE
BC
AF

10

O1F4
01F5
01F6
O01F7
O1F8
01F9
O1FA

O1FB

1.7.3 s

Format: e.qg. ! s
FIRST> 0230 M

LAST> 0203)

TC> 0208)

A block of memory, as defined by the user in response to the FIRST
and LAST prompts, is shifted to another area of memory store as defined
by the user in response to the TO prompt. 4

The shift routine is entered by typing 'S' in response to the
command prompt(!), and three four-digit hexadecimal addresses are
required for operation. All contents of the locations specified by the
user, inclusive, are moved sequentially to another area of memory starting
at the address specified. The memory pointer is not affected by this
command. It is possible to shift a block up or down the memory and the
source area and the destination area are allowed to overlap. If however
the final address is less than the first address specified, an ?ERR?
message will be output and a return made to the Cassette Operating
System(prompt-») .

Note that the memory contents are not tested, as in the 'P' command,
and therefore any attempt to overwrite ROM (Read Only Memory), or
access non-existant memory, will be nullified- though not pointed out
to the user.

>PC E6AC C9 CD AD EO 18 F3 F5 3A
SP FFBE 9E E6 AC E6 3F E4 FF 00
IY 01D5 80 C3 OF 04 00 FF EE 00
IX 7B0O0 7F C8 F7 01 C9 CD C8 7B

E6AC C9 CD AD EO 18 F3 F5 3A

FFBE 9E E6 AC E6 3F E4 FF 00
01D5 80 C3 OF 04 00 FF EE 00

7B00 7F C8 F7 01 C9 CD C8 7B

EEDO 18 00 FO BA CO F5 00 01 £ HL EEDO 18 00 FO BA CO F5 00 Ol
FFO4 04 00 F5 BE Cl F5 00 02 £ DE FFO4 04 00 F5 BE Cl F5 00 02
0000 AC E6 00 00 C3 2F E4 00 £ BC 0000 AC E6 00 00 C3 2F E4 00
0642 Z N T S AF 0642 Z N T
0000 FF FF FF FF FF FF FF FF £ I0 0000 FF FF FF FF FF FF FF FF

H T
00 01FC 00 8204 E9 020c c3 £ OlF4 00 01FC 00 0204 E9 020C
00 OLFD 00 0205 03 020D 00 £ OLF5 00 01FD 00 0205 03 020D
00 01FE 00 0206 C3 020E 04 £ 0lF6 00 Ol1FE 00 0206 C3 020E
00 OLFF 00 0207 03 020F F7 £ OLF7 00 01FF 00 0207 03 020F
00 >0200 C3< 0208 04 0210 22 £ O01F8 00 >0200 C3< 0208 C3 0210
00 0201 09 0209 CD 0211 FE £ OILF9 00 0201 09 0209 09 0211
00 0202 02 020A E9 0212 03 £ OIFA 00 0202 02 0204 02 0212
00 0203 CD 020B 03 0213 28 £ OLFB 00 0203 CD 0208 CD 0213

(a)

Initial state

(b) After format example (above)

entered.

FIG 1.8 - EFFECT OF 'S' COMMAND (e.g.)

26

C3

00
04

F7
22

03
28

>PC
SP
IY
IX
HL
DE
BC
AF

An extra point here is that the front panel 'S' command can also
be executed directly from the Cassette Operating System (prompt-+), but

not the Basic Disc Operating System (normal prompt A>).

1.7.4 G, N

These two commands are taken together as they both provide for a
'memory search'.

Format:

e

.g.

VVVV:-

2|5 15

N

'y

The 'G' command enables a particular byte pattern to be searched

for within memory.
for the byte values in the pattern.
RETURN is pressed with no associated byte.

On entering this command the routine will prompt ()
Prompts will continue until a

On the final RETURN the routine will search for the specified
If the pattern is found then the memory pointer is

pattern within memory.

modified to point
occurrence of the

E6AC
FFBE
01D5
7B00
EEDO
FFO4
0000
0642

Cc9 CD
9E E6
80 C3
7F C8
18 00
04 00
AC Eb6
Z

AD
AC
OF
F7
FO
F5
00
N

EO
E6
04
01
BA
BE
00

to the location containing the first byte of the first
pattern.

18
3F
00
Cc9
co
Cl

Cc3
T

F3
E4
FF
CD
F5
F5
2F

F5
FF
EE
c8
00
00
E4

3A
00
00
7B
01
02
00

I10 0000 FF FF FF FF FF FF FF FF

01F4

01F5
01F6

01F7
01F8
01F9
O1FA
O1FB

00

00
00

00

00
00

00
00

OlFC

O01FD
OlFE

OlFF

>0200
0201

0202
0203

(a)

00

00
00

00
C3<
09
02
CD

FIG 1.9 - EFFECT OF 'G' COMMAND (e.g.)

T

02
02

0206
0207

02

0209
020A
020B

04 E9
05 03

C3
03

08 04

Initial state

CD
E9
03

020C

020D
020E
020F
0210
0211
0212
0213

c3
00
04
F7
AF
E5
El
28

>PC
SP
IY
IX
HL
DE
BC
AF

10

0204
0205
0206
0207
0208
0209
020A
020B

E6AC
FFBE
E1AE
FFEC
EEDO
FFO04
0000
0642

C9 CD
9E Eb6
20 56
3C E9
18 00
04 00

AC E6
Z

AD
AC
4E
00
FO
F5

00
N

EQ
E6
43
00
BA
BE
00

18
3F
CD
7F
co
Cl

c3
T

F3
E4
E2
El
F5
F5
2F

F5
FF
E6
42
00
10
E4

3A
00
2A
06
01
02
00

0000 FF FF FF FF FF FF FF FF

E9
03
C3
03
04
CD
E9
03

020C
020D
020E
020F

>0210
0211

0212
0213

Cc3
00
04
F7
AF<
E5

El
28

T

0214

0215
0216

0217

0218
0219

021A
021B

(b) After format example (above)
entered.

2T

oc
FE
05
co
3A
3C
02
2F

021c
021D
021E
021F
0220
0221
0222
0223

32
3C
02
AF
c9
CDh
1D
26

Once a pattern has been entered using the 'G' command, the 'N'
command will get the next occurrence of the same pattern. On successive
entries of 'N' the memory pointer may be seen to point to location FF4E,
this is the store used by the routines for the pattern. Note therefore
that if the memory pointer never moves from FF4E, this is an indication
that the pattern does not exist in usable memory.

1.7.5 H
Format: e.g. ‘ H
> 3422 ¥
> 342)

Typing 'H' provides the user with a hexadecimal calculator. This is
therefore an extremely useful tool for working out relative addresses,
amongst other things.

The routine prompts (>) for two hexadecimal values. After the second
value has been entered the routine will print out the sum and the DIFFERENCE
of the specified values. For example, using the format figures (above) the
scrolling area at the bottom of the screen will read as follows:

w|m

42A
4 6854 (@000

>
>

w

t X
Sum Difference

Be careful when determining relative addresses. The 'R' command should
always be used to check these.

1.7.6 Z,K

Format: :

N

! K

In front panel mode it is possible to step through machine level
programs an instruction at a time, by using the 'Z' command. The next
instruction to be obeyed will be given by the program counter (PC) - not
the memory pointer. After any instruction has been executed the contents
of all affected registers will be modified appropriately, with the program
counter (PC) containing the address of the next instruction to be obeyed.

Complex instructions such as LDIR will require a multiple number
of 'single steps' for completion, owing to the way in which the 280
executes such instructions.

One particular difficulty with single stepping is the use of

routines which are time dependent, e.g. the keyboard input routines. A
convenient way round this is to use the BREAK code (RST 38H, FF hex). This

28

break code is inserted into the first byte of the instruction following the
time dependent routine. The 'K' command can now be given which will cause
the program to be executed at normal speed, using the values presently in
the registers. When the time dependent routine has been fully executed

(for example with a keyboard input routine this could be after a key has
been pressed), the break point will be encountered, causing a fresh display
of the front panel and a return to front panel mode. At this point the
program counter will contain the address of this 'break' instruction and the
memory pointer will be pointing to the same. The original content of this
location can now be replaced and the single stepping continued as normal.

Single stepping is achieved in the 380Z by enabling a counter which
causes a non-maskable interrupt (NMI) after the execution of a single
instruction. Prior to the execution of the instruction the contents of
locations @@66 to @@68 hex, are saved (NMI transfer vector) and stored
immediately afterwards. For this reason it is not possible to single step
correctly through these locations. This is not a serious handicap as in
nearly all cases single stepping is carried out within user programs and
these should never access this area anyway, for program instructions.

1.7.7 3

Format: e.g. ! J > 2433

The 'J' (JUMP) command is used to start the normal execution of a
machine level program at the address specified by the user. On issuing
the 'J' command a prompt (>) is given for an address. When the address
is entered the stack pointer is reset, the specified address is placed into
the program counter (PC) and normal execution initiated.

Note that the 'J' command is also available in the Cassette Operating

System monitor mode, (prompt -) - but not in the Basic Disk Operating System,
(normal prompt A >).

1.8 Exits (CTRL-B, CTRL-C)
P S ST

An exit can be made from front panel mode at any time, and in two
ways.

1.8.1 Control - B

Typing control-B while in front panel mode will force an exit to
the Cassette Operating System monitor (prompt -). The stack pointer is
reset and the full screen scroller returned.

29

1.8.2 Control - C

Typing control-C while in front panel mode (or monitor mode) will
force an exit to the CP/M Disc Operating System. This is only the
case if the 'systems' discis in unit A. If the disc or disc unit is not
available for some reason then the error message ?BOOT? will appear and
a return to the Cassette Operating System made.

*

1.9 Calling the Front Panel

Finally, the Front Panel may be entered via a defined address which
can be 'called'. As long as the PC is not altered in any way, the 'K'
command will return to the instruction following the CALL, and normal
execution will be resumed.

30

SECTION 2

FEEDS DO S WD S WD O

31

% ,

s

32

2. 780 INSTRUCTION SET
]

The Z80 microprocessor unit is the third member of the family, the first
two being the 8008 (48 instructions) and the 8080 (78 instructioms).

A set of 158 instructions comprises the repertoire of the 280. This
implies that although the Z80 is a powerful MPU (microprocessor unit)

it is not an easy device to master well. As time and practice progress
however the full qualities of this excellent MPU will begin to evolve.

In many cases it is possible to group a number of instructions and consider
them all in one go. By describing, in as much detail as necessary, the
operation of one of the instructions in any group, the operation of the
remaining instructions will alsoc be known. The source and destination

of the data and affected flags are likely to be the only differences.

It is on this principle that the instruction set of the 280 has been
organised here. Wherever possible, instructions have been grouped
together. For instance, all eight-bit loads are considered together.
If it is possible to sub-divide these groups so that each sub-division
contains an operationally similar set of instructions, this has also
been done.

Considerable effort has been put in to arrange the layout of all groups
and sub-divisions of groups of instructions to allow for easy reference.
It should not, and is not intended to be, necessary to know all the
instructions in any one section before progressing on to the next.
Reasonably complex, though not necessarily efficient, machine level
programs can be written by referencing the appropriate beginnings

of sections. As expertise increases, each section can be read into

a little more fully.

Two non-standard (ZILOG) mnemonics have been introduced by Research
Machines Ltd. effectively increasing the instruction range of the

Z80. This capability has come about by virtue of pseudo-instructions
provided by the Cassette Operating System monitor of the 380z.

One of these, the Call-Relative (CALR) instruction, will be dealt

with in the section on 'Calls and Returns'. The second is the 'trap'
instruction (EMT) and details of this can be found in the COS Reference
Manual.

At present this section has been included mainly for 'completeness'

of the text as a whole. It is not intended to be a teaching text on
machine level programming, the bibliography will refer to many good

books on this.

2.1 8-BIT LOADS

In all but two of these instructions, both of which are rarely used,
the flag register remains unaffected by the operation. In all cases
the source content remains unchanged after the transfer. Both these
points are important as it is extremely useful to carry out a number
of load instructions and not have to be concerned about the flags, and
to make a data transfer without corrupting the source.

33

2.1.1 'REGISTER-REGISTER’ AND 'IMMEDIATE VALUE - REGISTER'

LOADS

|
| REPERTOIRE:
i T

Source
A B C D E H L n
Destination

A TF 78 79 7A 7B~ 7C 7D 3E
B 47 49 41 42 43 44 45 @6
C 4F 48 49 4A 4B 4C 4D gE
D 57 5@ 51 52 53 54 55 16
E 5F 58 59 5A 5B 5C 5D 1E
H 67 6@ 6l 62 63 64 65 26
L 6F 68 69 6A 6B 6C 6D 2E

NB The above table ignores the four more rarely used instructions
two of which do affect the flag register.

e.g. MNEMONIC
a) 1D C,A
b) LD D,32H

HEX CODE

4F

16 3

2

ACTION

Load contents of A
register into the
C register.

Load 32 hex into the
D register.

All 'register-register' loads for this group are single byte
instructions and the contents of any register can be copied into
any other register, with the exception of the flag register. All

'immediate value-register'

loads are two-byte instructions. The

first byte defines the destination register and the second byte is
the hex value for the load.

OPERATION:
T,

e.g.

Contents; Before:
After:

Flags affected:

42
42

none

CPU
B
REGISTER

1D B,E
CPU
E H—>
REGISTER
8 Bits

34

Contents; Before: @@
After: 42

REPERTOIRE:
T,

Source
(HL) (BC) (DE) (Ix+d) (Iy+d) (nn)

Destination

A 7E [2):1 1a DD7E FD7E 3a

B 46 DD46 FD46

C 4E DD4E FD4E

D 56 DD56 FD56

E 5E DD5E FD5SE

H 66 - DD66 FD66

L OE DDGE FD6E
e.qg. MNEMONIC HEX CODE ACTION

a) LD B, (HL) 46 Load into the B register the
contents of the memory location
pointed to by the HL register
pair.

b) LD D, (IX+2BH) DD 56 2B Load into the D register the
contents of the memory location
pointed to by the index register
(IX) plus the offset of 2B hex.

c) LD A, (34B2H) 3A B2 34 Load into the accumulator the
contents of memory location
34B2 hex.

These are either single-byte or three-byte instructions. Note that when
using the contents of BC or DE, or using an absolute address 'nn' as
the source, the A register is the only possible destination.

OPERATION:
TITITTRITIVE™

e.qg. LD C, (HL)

(HL)= 32A4H
New contents: 2A CPU C REGISTER
Memory 8 BITS

32A3

32n4 2 A

32A5

Note that exactly the same effect would have been achieved if the
instruction; LD C, (IY+J4H) where (IY)=32A¢H, was executed.

Flags affected: none.

35

2.1,3 'REGISTER-MEMORY' AND 'IMMEDIATE VALUE-MEMORY'

LOADS
REPERTOIRE:
TR nm
Source
A B Cc D E H L n
Destination

(HL) 77 70 71 72 73 74 75 36

(BC) @2

(DE) 12

(IX+4) DD77 DD7@ DD71 DD72 DD73 DD74 DD75 DD36

(IY+d) FD77 FD7¢ FD71 FD72 FD73 FD74 FD75 FD36

(nn) 32

e.g. MNEMONIC HEX CODE ACTION

a) LD (HL) ,C 71 Load into the memory location
given by the HL register pair
the contents of the C register.

b) LD (HL) ,4AH 36 4A Load into the memory location
given by the HL register pair
the hex value of 4A.

c) LD(IY+g4H) ,E FD 73 @4 Load into the memory location
given by the IY index register
plus the offset of @4H, the
contents of the E register.

d) LD(2a47H) ,A 32 47 2a Load into the memory location ,
2A47H, the contents of the £
accumulator.

e) LD (IX+2CH) ,6FH DD 36 2C 6F Load into the memory location

given by the contents of the
IX index register plus the offset
of 2C hex, the hex value of 6F.

This range of 8-bit loads can be one-byte to four-bytes long for the
instruction. Note especially that the only register which can be used
to enter a value directly to a named location, is the A register; and
that if a given hex value is to be loaded into a location, the location
must be specified in either the HL register pair or one of the index
registers.

36

OPERATION:
T

e.g. LD (HL),C
(HL) =32A4H

Contents: 4C CPU C REGISTER

Memory 8 BITS

32a3

32a4 4 c (new contents)

32A5

32R6

Note that exactly the same effect would have been acheived if the
instruction; LD(IX+@4H),C where (IX)=32AgH , was executed.

Flags affected: none.

2.1.4 'ACCUMULATOR <+ MEMORY REFRESH/INTERRUPT VECTOR
REGISTERS' LOADS

REPERTOIRE:
AT,
LD A,I .
LD A,R affect the flag register.
I=Interrupt Vector Register
R=Memory Refresh Register
Lp I,A
LD R,A

Refresh Register

The 'R' register is used by the CPU to enable automatic refreshing of
external 'dynamic' RAM (Random Access Memory). Most systems will have
dynamic RAM in them and for this reason it is not advisable to tamper
with the 'R' register. Certainly it is not normally used by the programmer.

Interrupt Vector Register

The 'I' register is, as the name suggests, used to set up an interrupt
vector table which will allow up to 128 (decimal) interrupt routines to
be accessed, using a particular 'mode' of interrupt handling.

37

Register 'I' is loaded with the most significant eight bits of the
address specifying the position of the interrupt vector table. When

an interrupt occurs the interrupting device is signalled to hand over
the least significant eight bits of the address, and these are combined
with the contents of the 'I' register. The address now obtained in
turn contains the address of the interrupt routine.

I 1143 1300 (010,000 @P1P | <——— from device

MSB LSB

Memory Map

c8gg

c8g2 FF C4

c8@4

C8@6

14
Q

FFC2

FFC4 ; start of interrupt routine.

FFC6

*

The 'I' register is in fact used in one of three possible interrupt
modes which can be called upon under program control.

Flags affected: Under LD A,I and LD A,R operations,

C Z P/V S N H

. ¢ IFF ¢ o) o)

38

2.2 16-BIT LOADS

In all cases of the 16-bit load the flag register remains unaffected
by the operation. As with the 8-bit loads the contents of the source
in all transfers remains unaffected.

The stack operations (i.e. POP, PUSH) are also 1lé-bit loads but these
are covered separately, purely because the mnemonics allow for a con-
venient group. Most texts on the subject will include all the le-bit
transfers in one section.

2.2.1 'REGISTER-MEMORY' AND 'REGISTER-REGISTER' LOADS

REPERTOIRE:
T
Source
BC DE HL IX IY SP
Destination
(nn) ED43 EDS3 22 DD22 FD22 ED73
SP F9 DDF9 FDF9
e.g. MNEMONIC HEX CODE ACTION
a) LD SP,IX DD F9 Load the contents of the IX
index register into the SP
(stack pointer) register.
b) LD (3A42H) ,DE ED 53 42 3A Load the LSB (E) of DE

into memory location 3A42 hex,
and the MSB(D) into 3A4B hex.

Register to memory transfers are either three-byte or four-byte
instructions; register to register transfers being either one-byte or
two-byte instructions. Note that in register-register transfers the
only possible destination is the Stack Pointer.

OPERATION (REGISTER—REGISTER%;
L L L e

e.g. LD SP,IY

SP HIGH ORDER BYTE

LOW ORDER BYTE

16-BITS in total.

IY HIGH

LOW

Flags affected: none.

39

SPERATION (REGISTER-MEMORY)
TR TR T

e.g. LD (27a4H) ,DE

DE HIGH ORDER BYTE D

LOW ORDER BYTE E

16°'BITS in total

Memory: 27A3

27a4

27A5

27R6

Note that the register-memory transfer places the LSB chronologically
before the MSB within the memory. This is standard practice for all
l6-bit storage in memory.

Flags affected: none.

2.2.2 'MEMORY-REGISTER' AND ’'IMMEDIATE VALUE-REGISTER'

lIlIlllIJigé&E;IllIIlllIIlIlIllllIlIIllIIIIIllllllllll!llllllllllll

REPERTOIRE:
TNV TR
Source
(nn) nn
Destination
BC ED4B @1
DE EDSB 11
HL 2a 21
IX DD2A DD21
Iy FD2A FD21
SP ED7B 31
e.g. MNEMONIC HEX CODE ACTION
a) LD DE,47A9H 11 A9 47 Load the next value 47ASH
into the DE register pair.
b) LD BC, (3C42H) ED 4B 42 3C Load the contents of memory

location 3C42 hex into the

low order byte (C) of the BC
register pair, and the contents
of memory location 3C43 hex into
the high order byte (B).

40

These instructions are either three or four bytes long. The instructions
concerning the Stack Pointer register provide an easy mechanism for the
setting up of local 'stack areas'

OPERATION;
TR

e.g. LD HL, (543CH)
HL HIGH ORDER BYTE H
LOW ORDER BYTE L 16 BITS in total

Memory: 543B

543C

543D

543E

Flags affected: none.

2.3 PUSHES AND POPS
p-or oo

The PUSH and POP instructions are really 1l6-bit load instructions of the
form LD(SP), R and LDR, (SP) respectively, where R is a register pair.
From this it is seen that the PUSH and POP instructions enable input and
output from the stack area.

REPERTOIRE :
TOTITTTn

PUSH) F5 cs D5 ES DDE5S FDE5

; AF BC DE HL IX IY
POP) Fl Cl D1 El DDE1l FDE1
e.qg. MNEMONIC HEX CODE ACTION
a) PUSH BC c5 Store the contents of the BC
register pair into the top of
the stack region.
b) POP IY FD El Transfer the top two bytes of

the stack region into-the IY
register pair.

41

OPERATION:
T,

The stack, which is just a dedicated patch for storing data in a controlled
manner, works on a Last-in-First-out (LIFO) principle. This means that
the last bit of data stored away will be the first to be retrieved.

On a PUSH the stack pointer is decremented and the MSB of the register
stored; the stack pointer is again decremented and the LSB of the
register stored.

On a POP the contents of the memory location, pointed to by the stack
pointer, is transferred into the LSB of the destination register. The stack
pointer is incremented and the new memory content transferred to the MSB
of the destination register. Finally the stack pointer is again
incremented.

Consider:
432A
a) PUSH AF 432B (@D)
(AF)=263AH
432C (72)
432D 3a —
432E 26 j on PUSH
Original (SP)= 432F (45) -—
432A
b) POP BC 432B (@D)
(BC)*“263AH
432C (72)
Original (SP)= 432D 3A Cle—
432E 26) on POP
432F (45)

STACK OPERATION The two operations above combine to form the
pseudo-instruction: LD BC,AF

Flags affected: none.

42

2.4 8-BIT ARITHMETIC

There are six basic 8-bit arithmetic operations available; ADD (Add), ADC
(Add with Carry), SUB (Subtract), SBC (Subtract with Carry), INC (Increment)
and DEC (Decrement). No instructions exist for any kind of multiply or
divide and hence these can only be implemented by software routines or
dedicated hardware. All 8-bit arithmetic operations use the accumulator

() for one of the operands and the result, the other operand being the
contents of an 8-bit register, the contents of a memory location, or an
absolute 8-bit value.

24,1 "ACCUMULATOR AND REGISTER' ARITHMETIC

REPERTOIRE:
TG

Second Operand

(MNEMONIC) A B C D E H L
Instruction
ADD 87 8¢ 81 82 83 84 85
ADC 8F 88 89 8a 8B 8c 8D
SUB 97 og 91 92 93 94 95
SBC 9F 98 99 9a 9B 9C 9D
INC 3c ¢4 gc 14 1C 24 2C
DEC 3D @5 @D 15 1D 25 2D
NB The first operand is always the accumulator and the result is
always in the accumulator. Naturally this does not apply to
'INC' and 'DEC'.
e.g. MNEMONIC HEX CODE ACTION
a) ADD A,A 87 Double the value in the
accumulator.
b) INC L 2C Add one to the value

in the L register.
These are all single-byte instructions and have varying effects on the

flag register. Notice that it is illegal to use the flag register
as one of the operands.

43

OPERATION:
TmmTTTTTITTITI N

a) Without carﬁx:
L

7
Before After 8 BITS e.g. ADD A,D
4
7 Ba Accumulator Note that contents
of carry flag are
8 BITS ‘ ignored on input to
the arithmetic/logic
1 @ CRY ALU ‘ unit.
73 73 D register (Add)
8 BITS
b) With carry:
,I
Before After 8 BITS
c4 41 Accumulator e.g. SBC A,B
8 BITS
1 CRY ALU
@ 1 BIT
82 82 B register (sgzziaft with
8 BITS Y
c) Increment/decrement:
MR AR TR TNTITn.
‘8 BITS
Before After e.g. DEC H
47 46 H register
8 BITS
(Decrement)

44

Flags affected:

ADD; ADC

SUB; SBC

INC

DEC

P
Z /V
¢ v
P
Z /V
¢ v
P
Z /V
¢ \Y
P
Z /V
¢ v

45

2 4 2 " ACCUMULATOR AND MEMORY CONTENTS ARITHMETIC

REPERTOIREi
Second Operand (Memory)
(MNEMONIC) (HL) (IX+d) (IY+4)
Instruction
ADD 86 DD86 FD86
ADC 8E DD8E 4 FD8E
SUB 96 DD96 FD96
SBC 9E DDSE FDOE
INC 34 DD34 FD34
DEC 35 DD35 FD35

NB These are either single or triple byte instructions. Apart
from the INC and DEC instructions the accumulator is always the
first operand and the destination for the result. Note therefore
that with the 280 it is not possible to directly increment
(e.g.) the contents of a location, this must be performed through
a register. '

e.g. MNEMONIC HEX CODE ACTION
a) SUB A, (HL) 96 Subtract from the accumulator

the value given by the contents
of the location in HL.

b) DEC (IY+g3) FD35 @3 If e.g. IY=3624H then decrement
the contents of location
'3627H'.
OPERATION
fnnNTTnTm

The operation of these instructions and the flags affected by
them are similar to those shown in 2.4.1. The only difference being
that contents of memory locations are used in the operations instead
of 8-bit general purpose registers.

2.4.37 ACCUMULATOR AND ABSOLUTE VALUE ARITHMETIC

REPERTOIRE:
T

Four instructions exist in this category:

i) ADD A, n C6 n = any 8-bit value.
ii) ADC A, n CE
iii) SUB A,n D6
iv) SBC A,n DE

46

e.g. MENMONIC HEX CODE ACTION

ADD A,+3 C6 @3 Take the value in the
accumulator, add +3 to
it and put the result
in the accumulator.

Note that all these instructions are two-byte instructions and that
INC and DEC do not exist as they are superfluous.

OPERATION
T

Again the operation and effects on flags are as given in
2.4.1 the only difference being that absolute values are used instead
of 8-bit general purpose registers.

2.4,4 GENERAL PURPOSE ARITHMETIC

In addition to the above 8-bit arithmetic instructions there are
three other instructions vital to number crunching. These are:

i) CPL - 'Complement' the accumulator
ii) NEG - 'Negate' the accumulator
iii) DAA - 'Denary' adjust the accumulator

The first two are the instructions for obtaining 'l's-complement'
and '2's-complement' respectively of the contents of the accumulator.
A number of the books given in the bibliography describe the use
of the 'complement' representation of numbers very well.

In addition to these two there is the 'DAA' instruction and
this is used to obtain a denary number in the accumulator equivalent
to the hexadecimal number originally in it. Hence the instruction
is used when programming with binary-coded-decimal (BCD) numbers.

As an example of its use consider the following:

e.g. Suppose the two BCD numbers 16 and 48 were in the accumulator
and 'C' register respectively. In BCD what would be required

is:
16 (BCD)
+ 48 (BCD)
64 (BCD)

However the instruction 'ADD A,C' would obviously work in
hex, and therefore the following results:

16 (BCD)
+ 48 (BCD)
S5E (HEX)

47

The 'DAA' instruction would therefore be used to turn
the contents of the accumulator from (SE) to (64) and
hence obtain the correct BCD representation.

MNEMONIC HEX CODE
CPL 2F
NEG ED44
DAA 27

Flags affected:

CPL c z P/ S N | H
.))) 1 1

P
NEG C pA / v S N H

DAA C Z P/y S N H

48

2.5 1B-BIT ARITHMETIC

Unlike the eight bit arithmetic set the sixteen bit category is
quite limited. Only five operations exist because there is no
'SUB' instruction and all operations take place between CPU registers.

REPERTOIRE:
Second Operand
a)
(MNEMONIC) BC DE HL SP IX Iy
Instruction
ADD T @9 19 29 39
ADC ED4A ED5A ED6A ED7A
SBC ED42 ED52 ED62 ED72
INC @3 13 23 33 DD23 FD23
DEC @B 1B 2B 3B DD2B FD2B

NB All of this group have 'HL' as the first operand and
the destination for the result, except for INC, DEC.

b) Second Operand
(MNEMONIC)
Instruction
ADD DDg9 DD19 DD29 DD39

NB All of this group have 'IX' as the first operand and
the destination for the result.

c) Second Operand
(MNEMONIC)
Instruction
ADD FD@9 FD19 FD29 FD39

NB All of this group have 'IY' as the first operand and
the destination for the result.

49

OPERATION
T,

A pictorial representation of the operation of these instructions
can be obtained from 2.4.1, remembering that 16-bit values are being
used and that the operands are limited to 16-bit CPU registers.

ExamEles: a

a) Without carry:

Before 'ADD HL,DE' After
HL 6768 HL l676c
DE PoP4 DE PBB 4
b) With carry:
Before 'SBC HL,BC' After
HL 5454 HL 4332
BC |1121' BC | 1121
[1]

cy [1] cy |¢

c) Increment/Decrement:
Before 'INC IX' After

IX i F4BC IX F4BD

Flags affected:

ADD o] zZ Py S N H
$ g . : @ X

AD B/
C o] Z v S N H
$ ¢ ' $) X

Py]

SBC c zZ v S N H
$ $ v $ 1 X

Note that 16-bit INC,DEC do not affect the flags in any way.

50

2.6 JUMPS

At strategic points within a machine level program it is necessary to jump
unconditionally or conditionally, to another part of the program. For
instance it may be necessary to by-pass a small local store of data, or
branch off to a choice of program segments depending upon given conditions.

All the jump commands in the Z80 instruction set require an absolute
address to branch to, and certain registers may be used to supply this
address. Note that this applies only to the JUMP instructions, there
are further instructions (called JUMP-RELATIVE instructions) which
operate in a different way. The flags are used but not altered by
JUMP instructions.

REPERTOIRE 2
TTNNTTNTTTm
Condition
(MNEMONIC) none C NC Z NZ PE PO M P
Instruction
JP nn c3 DA D2 CA c2 EA E2 FA F2
JP (HL) E9
JP (IX) DDE9
JP (IY) FDE9

-

Note that the address to jump to cannot be obtained from the registers
if a condition accompanies the instruction.

CODE CONDITION FLAG STATE
C carry c=1)
NC noncarry c=g)
Z zero z=1)
NZ nonzero Z=@) As on 3802
PE parity even V=1) front panel.
PO parity odd V=@)
M sign negative S=1)
p sign positive S=g)
e.g. MNEMONIC HEX CODE ACTION
a) JP 43A2H C3 A2°43 Jump unconditionally to

memory location 43A2 hex.

b) JP NZ,1AC3 H C2 C3 1A Jump to memory location
1AC3 hex on condition
that the zero flag is not
set.

51

OPERATION%
T

A very simple schematic of the fetch-execute cycle for instructions in a
program might be as follows:

FETCH FETCH-EXECUTE
(NEXT) CYCLE
INSTRUCTION
SET 'PC'
TO NEXT
INSTRUCTION
EXECUTE
INSTRUCTION

If the instruction executed is a JUMP then, provided any conditions
are met, the Program Counter (PC) will be loaded with the address
given by the jump instruction. In this way, execution of the program
instructions has been transferred to a given point in the program.

Memory: * POP BC
XOR A
JP Z, OTHER Alter (PC) to address of 'OTHER'
Contents of (PC) — LD B,A
?fter '?etch' o? (b) -
Jump' instruction RET
OTHER: PUSH AF
PUSH HL
XOR A
LD B,L

In the above figure the Program Counter would be pointing to the (LD B,A)
instruction as the previous JUMP instruction was being executed. The
successful JUMP instruction would alter the contents of the program
counter to point to the instruction at location 'OTHER'. Program
execution then continues from this point.

Flags affected: none.

52

2.7 RELATIVE JUMPS
joo oo o

These instructions perform exactly the same function as the absolute jump
instructions in that they transfer control from one part of a program to
another. The difference exists in the way in which the destination to
jump to is calculated. In the absolute jump instructions it is a simple
use of collecting the two-byte address given or the register containing
the address, and loading the address into the Program Counter, hence
transferring control. With relative jumps an 'offset' is specified which
basically says go forward so many places or back so many places. This
kind of instruction for transferring control is necessary for Position
Independent Code (PIC). PIC is code which can be loaded anywhere in the
memory of the microcomputer and still run. Obviously if absolute
addresses were specified then this would not be possible as control
would be passed to the wrong location.

The repertoire for relative jumps is not so grand in the Z80 as the
absolute codes. An unconditional relative jump is permitted together
with conditionalrelative jumps using the carry flag and the zero flag
only. There is also a special relative jump instruction which uses the
zero flag and the 'B' register for setting up control loops.

REPERTOIRE:
M.

Condition

(MNEMONIC) none c NC Z NZ

Instruction
JR dis 18 38 3¢ 28 2@

SEecial
DJNZ dis 19

In no circumstances can a register be used to specify the relative position
to jump to. The distance (dis) to move forward or backwards is specified
by one and only one byte after the instruction code, in a notation known

as "Two's Complement". In the context of the relative jump this means
that if the most significant bit of the offset byte is a zero (codes
@@-7F16), then the jump is positive i.e. forwards. If the most significant
list is a 'one' (codes 8@-FF;¢) then the jump is negative i.e. backwards.
This means that it is possible to jump forward up to 127;0 places and
backward up to 128,09 places.

RELATIVE JUMP VALUES

CODE: 8¢ &———FF, @@ ,Ple——TF
DISTANCE: -{zi;;;;;;;;;;:;, @, Lo, 127
Backwards Forwards

53

e.g. MNEMONIC
a) JR 2AH
b) JR @FCH
(special)
c) DJNZ @FCH

(Decrement and Jump if
Not Zero)

BE CAREFUL:

HEX CODE

18 2a

18 FC

1¢ FC

ACTION

Jump relative uncondition-
ally forward forty two
locations.

Jump relative uncondition-
ally backward four locations.

Decrement the value of the

'B' register and jump
backward four locations
if the new value of 'B'
is not zero.

When using these instructions it is vitally important to remember that
once an instruction has been fetched from memory the Program Counter
is automatically incremented to the start of the next instruction.

e.g. a) GOING FORWARD;
L]

MEMORY : ongg

PAgl

gng2
(PC) is here ////’ gag3

after fetching
the 'jump-relative' #ags
instruction

18)
) JR @2
@2)
AF XOR A)
i Cc9] RET On executing
D the 'jump-
Cc5 PUSH BC relative' the
(PC) has two
° added to it.

In the above example program execution would normally have continued

at location '@gAg@g2'.

On execution of the jump relative instruction

however the program counter has two added to it, hence program

execution is transferred to location '@ag@g4'.

54

T

b) GOING BACKWARD:
TN

MENORY @820
@B21

@B22

@B23

#B24

@B25

@B26

g @B27

#B28

18

FA

)
) JR @FAH
)

®-_(PC) is here after
fetching the 'jump-
relative' instruction.

In this case program execution would normally have continued at
location '@B28'. On executing the jump-relative instruction the (PC)

is to have six deducted from it (i.e. FA;¢=-6).

therefore transferred to location '@B22'.

Flags affected: none.

Program execution is

55

2,8 SUBROUTINE INSTRUCTIONS

From the previous two sections it is seen that a 'JUMP' can alter
the sequence in which the instructions are executed. They are
therefore a form of 'Control' instruction. Another control mechanism
which is required is one to provide access to and returns from a
'subroutine'. One use of a subroutine is to minimise code,

e.g. if an output routine is used often it is wasteful to have to
code it every time it is needed. It is obviously better to 'CALL®
the routine and then 'RETURN' from it on each occasion. The overall
principles at machine level are no different from say subroutines

in BASIC or procedures in PASCAL although the intricacies are
different.

The Z80 uses the 'CALL' instruction to access a subroutine and
a "RET' instruction to return execution to the calling program.

MAIN
PROGRAM .
. (spP) < (pC) SUBROUTINE 'TX'
. (PC) <« (TX)
23a2 CALL TX 3452
23A5 ° 3454
2376 ° 3455
. 3456 RET
(PC) < (SP)

OPERATION OF CALL/RET

Remember that the Z80 is a 'stack' orientated device and subroutine
access is achieved using the stack. When a 'CALL' is executed the
contents of the program counter are stored on the stack (this being
the address of the next instruction) and execution is transferred to
the address given by the 'CALL'. At the end of the subroutine a 'RET'
instruction places the contents of the stack into the program counter
and therefore execution will continue back at the main program. Note
very carefully that this means there must not be an uneven number of
'PUSHES' and 'POPS' in the subroutine, or anything could happen:

Apart from the straight 'CALL' and 'RET' it is possible to call
and return on the condition of some flag, as given below.

56

REPERTOIRE:
T,

(MNEMONIC)

Instruction

CALL
RET

Flag Condition

CD
(04°)

D8

M

FC
F8

NC NZ P PE PO Z

D4 c4 F4 EC E4 cc
D@ cg F@ E8 E@ c8

NB All the 'CALL's are three-byte instructions and all the 'RET's
are single byte instructions.

e.g. MNEMONIC
a) CALL Z,42A3H

b) RET PE

Flags affected:

none.

E8

Flag Mnemonics

C
M
NC
NZ

P
PE
PO
Z

HEX CODE

CC A3 42

(unconditional)

if carry flag set
if sign negative

if carry flag unset
if non-zero

if sign positive

if parity even

if parity odd

if zero

ACTION
If zero flag is set then call
the subroutine at 42A3H

Return to calling program
if parity flag shows 'even'.

57

2,9 RELATIVE CALLS

When writing position-independent code (PIC) it was shown in the
section on 'jumps that a 'jump-relative' would be used. Similarly
for subroutines a 'call-relative' is needed. Despite the enormous
instruction set of the Z80 such an instruction does not exist.
Research Machines, in their wisdom, have however implemented such
an instruction using one of the 'page-zero' restart calls,

(cf. section 2.10). For the Assembler a new mnemonic has been
devised to cater for the new instruction. Only the one instruction
exists and this is for an unconditional call-relative, i.e. no
conditional call-relatives are implemented.

MNEMONIC HEX CODE ACTION

CALR 23H EF 23 (Operation is similar to 'jump-
relative' except that the return
address is placed on the stack).

2,10 RESTART CALLS

Within the 280 there are eight instructions which operate like a
'CALL' but the addresses are implied, i.e. they are predefined.
Often this is referred to as'page-zero' addressing because the most
significant byte of the implied addresses is zero. In the 280

they are known as 'restart' instructions.

REPERTIORE:

(MNEMONIC)

Instruction HEX CODE ADDRESS (CALLED)
RST @ c7 @
RST 8 CF 8
RST 1¢H D7 1¢H
RST 18H DF 18H
RST 2¢H E7 20H
RST 28H EF 28H
RST 3¢H F7 3@H
RST 38H FF 38H

NB Naturally these can be used by the programmer but care
should be exercised over their use. A number of them are
used by RML to implement certain functions (e.g. EMT,CALR)
and it would be disastrous to corrupt the operation of
these.

58

The formal subject of Boolean Algebra has a number of applications and
certainly it would be very odd to think of a computer processor without
some form(s) of logical instructions. Three major operators are avail-
able, 'AND, OR, XOR'. (Note that a 'NOT' operator is given by the
arithmetic 'CPL' instruction). Only 8-bit logical operations are
permitted and the result and one of the operands is always the accumulator.

REPERTOIRE:
T
Second Operand
(MNEMONIC) (HL) (IX+d) (Iy+d) A B C D E H L n
Instruction
AND A6 DDA6 FDA6 A7 Ap Al A2 A3 A4 A5 E6
OR B6 DDB6 FDB6 B7 B@P Bl B2 B3 B4 B5 F6
XOR AE DDAE FDAE AF A8 A9 AA AB AC AD EE
MNEMONIC HEX CODE ACTION
a) AND A,B Ag Logically AND the accumulator
and the 'B' register.
b) OR A,7FH F6 7F Logically OR the accumulator
with the value ‘'7FH'.
c) AND A, (IX+5) DD A6 @5 Logically AND the accumulator
with thevalue given in location
(IX)+5.
OPERATION:
TV

The effects correspond to normal Boolean rules:

AND OR XOR

=00 |
HOr O |w
= OO0 |\
—=+=O0O0 |¥
= OO |Ww
HHRFO |m
H~ OO |
~ O0Or~O |w
OrHEF O |

where S = result and A,B = operands.

Flags affected:

OR, XOR clz|®,s|N| &

59

2.12 BIT OPERATIONS
ASSRSSSRSRSRSRINNNNSaaaaNs

These instructions are confined to operating on bits inside eight-bit
values, and enable particular specified bits to be SET, RESET
(logical @), or TESTED. There are a lot of instructions catering

for this and therefore their mnemonics etc. are not shown here.

The appendices can be referred to in order to find the codes.

Basically the range is split up into two categories, one very large
and one very small. The small group consists of just two instructions
which enable the 'carry' flag to be complemented (CCF) or set (SCF).
The large group enables any bit (no. $=7) in the operands:

(HL), (IX+d), (IYy+d), A, B, C, D, E, H, L

to be:
i) SET e.g. SET 5, (HL)
ii) RESET e.g. RES 3,E
iii) TESTED e.g. BIT @&, (IX+3)

" When the 'BIT' instructions are used the zero flag will contain
the complement of the 'bit' specified, i.e. if the bit is a 'l'
then the zero flag will be unset; if the bit is a '@' then the
zero flag will be set.

Flags affected:

SET, RES

BIT c |z |¥ | s| N |H

60

It is often necessary to compare bytes of information and then to

act on the comparison accordingly. On some computers this comparison
process destroys the value being checked and therefore it is often
necessary to store the value away and regain it every time. The

Z80 allows the byte in the accumulator to be compared with a byte
from somewhere else (e.g. in a lookup table) with neither operand
being destroyed. The flag register is affected so that a decision
can be made on what to do following the comparison.

REPERTOIRE&
Tttt

(Mnemonic) (HL) (IX+d) (IY+d) A B C D E H L n
Instruction

CP BE DDBE FDBE BF B8 BS BA BB BC BD FE

N.B. The result and the first operand are always in the
accumulator. The operation is such that the flag
register is altered according to the operation:

A - (value)

So the comparison is performed internally as a subtraction
although the accumulator is not affected.

Flags affected:

61

2,14 ROTATES AND SHIFTS

A number of instructions exist to enable an 8-bit byte to have its
contents shifted or rotated a 'bit' at a time. Such operations are
useful e.g. in arithmetic routines or parallel serial transformation
routines etc. The actual codes for the instructions and their
mnemonics can be obtained from the appendices. At this point the
main concern is to what form these operations take.

Four main 'ROTATE' sets exist and three 'SHIFT' sets of instructions.
In each of the seven cases the eight-bit value can come from:

(HL) , (IX+d4), (Iy+d), A, B, C, D, E, H, L.

ROTATES i) RL (rotate left)
RN

[“ cY 7 *-— P ri—-

ii) RLC (rotate left and carry)

CY e w{;Li——————-¢1§——

iii) RR (rotate right)

iv) RRC (rotate right and carry)

SHIFTS
e

i) SLA (shift left arithmetic)

CY ' «— 7 -—— @ |a—0

ii) SRA (shift right arithmetic)

7 —» @ --—{CY
L4

62

iii) SRL (shift right logical)

p—»

77— @

When the accumulator is being used as the source for the 8-bits in a
'rotate' instruction then another set of instructions exist which perform
exactly the same operations as above but are twice as fast, and only

take up one byte instead of two for the instruction.

The main reason

for having them is to maintain compatability with the 8080 device.

i)
ii)
iii)
iv)

RLA
RLCA
RRA
RRCA

(17)
(@7)
(1F)
(@F)

equivalent to

RL A (CB 17)
RLC A (CB @7)
RR A (CH 1F)

RRC A (CB @F)

In addition to the above, two nibble-orientated 'rotates' are also
available, and these work between the accumulator and (HL):

i)

ii)

RLD (Rotate digits left)

RRD

| S| (HL)
(Rotate digits right)
l v Y
4 3 7 4 3 @
Y] (HL)

A

Owing to the fact that they are 'nibble-orientated' these instructions
prove useful in BCD operations, BCD ASCII conversion, etc.

Flags affected:

RLD,

(A1l

RLCA
RRCA

others)

C P/v N H
$. 3|2
C VA Pyv N H
.l P g | o
C Z P/V N H
O P g @

63

A small number of general instructions exist which can be split into
three sections, two of which only contain one instruction!

a) No-operation instruction:
ML]

MNEMONIC HEX CODE ACTION
NOP (%) Do nothing

This instruction has a number of uses which will become apparent as
programming expertise increases. For example it is useful for providing
‘expansion' areas in small blocks of code. As NOPs the 280 will just
plough through them - doing nothing. Flags are unaffected.

b) Halt instruction:

MV,
MNEMONIC HEX CODE ACTION
HALT 76 Halt the processor

As far as the 380Z is concerned it is never an advantage to literally
'"HALT' the processor chip. In any event the only method of recovering
from a 'HALT' is to provide an 'interrupt' signal or (on the 380Z) press
the reset button. In general - don't use it!

c) Exchange instructions;

There are six instructions within this category, four of which deal with the
normal CPU and two others which are concerned with the alternate register set.

i) CPU exchanges

MNEMONIC HEX CODE ACTION
EX(SP) ,HL E3 Exchange contents of SP with HL
EX(spP) ,IX DDE3 Exchange contents of SP with IX
EX(SpP),IY FDE3 Exchange contents of SP with IY
EX DE,HL EB Exchange DE with HL.

Operation

The operation of all exchanges is similar throughout the set.
As an example suppose DE = 24A3 and HL=65A5, on execution of
'EX DE,HL' the register pair DE=65A5 and HL=24A3,

ii) Alternate register set

MNEMONIC HEX CODE ACTION

EX AF,AF' @8 Exchange AF register pair with the
alternate pair.

EXX D9 Exchange register pairs BC,DE,HL

with their alternate pairs.

NB: These are the only instructions relating to the alternate set of
registers and therefore the alternate set can only be used as
a form of temporary storage area.

Flags affected: none.

64

2,16 INPUT/OUTPUT

Before much is said about the input and output instructions for

the Z80 it is worth saying the following. As far as the 'User' is
concerned these instructions are rarely used, except perhaps in
control applications or communications software. These instructions
are not used by the 'user' for (e.g. input from the keyboard or
output to the screen. The method of achieving such transfers is

through the RML 'EMT' pseudo-instructions (see the Firmware Reference
Manual) .

Z80 INPUT/OUTPUT
T T

The Z80 has, owing to its 16-bit address bus, the capability of
addressing up to 64K of memory. In addition to this and quite
independent from it, the Z80 can address 256 peripheral (input/
output) addresses, in the range @-FF (hex). Various bits of hardware
can be attached to the Z80 CPU by the data paths of the system and

be addressed quite independently from memory contents. For example,
to obtain the contents of memory at location 23 (hex) the instruction:

LD A, (23H)

could be used. If a peripheral device was addressable as an input
device at the same address then:

IN A, (23H)

would obtain the value from the peripheral.

i) INPUT

M
It is possible to input from a peripheral device to any of the CPU 8-bit
general purpose registers (except the flag register) when the address
of the device is held in the 'C' register. Alternatively the device
address can be an absolute value whereupon the destination must be
the accumulator. °

i.e. MNEMONIC HEX CODE
IN A, (n) BD n
IN A, (C) ED 78
IN B, (C) ED 4¢
IN C, (C) ED 48
IN D, (C) ED 5¢
IN E, (C) ED 58
IN H, (C) ED 6@
IN L, (C) ED 68

65

ii) OUTPUT
T

Output to peripheral devices is limited to the same constraints
as those for input:

i.e. MNEMONIC HEX CODE
ouT(n) ,A D3 n
ouT (¢) ,A ED 79
OouT(c),B ED 41
ouT(c),C ED 49
ouTr(),D ED 51
ouT(C) ,E ED 59
OouT(C) ,H ED 61
ouT(C),L ED 69

Flags affected:

In all but one case the flags are unaffected.
The one which affects the flags is 'IN A, (Q)'
and it does so as shown below:

c|z |pf | S| N|H

el

66

2.17

BLOCK

INSTRUCTIONS

Four of the categories described in this chapter,

COMPARES, INPUTSs

(8-BIT LOADS,
and OUTPUTs), have a set of related instructions
which are designed for use in managing blocks of data.

There are

four block instructions for each of the four categories and provide

similar facilities.

the operation being described later:

The mnemonics and codes are as shown below,

LOAD COMPARE INPUT OUTPUT
MNEMONIC CODE MNEMONIC CODE | MNEMONIC CODE || MNEMONIC CODE
LDI EDA@ CpPI EDAl INI EDA2 OUTI EDA3
LDIR EDB@ CPIR EDBl INIR EDB2 OTIR EDB3
LDD EDAS8 CPD EDA9 IND EDAA OUTD EDAB
LDDR EDBS8 CPDR EDB9 INDR EDBA OTDR EDBB
Mnemonic endings mean the following:
I - increment
IR - increment and repeat
D - decrement
DR - decrement and repeat
OPERATION
UMM
i) Loads: (e.g.) LDI (DE)« (HL)
re—— DE < DE+l
HL <« HL+1
BC « BC-1

ii)

NB LDIR is the same as LDI except that the operation
The two decrement instructions
are as their 'increment' counterparts except that DE,HL

are decremented instead of incremented.

is repeated until BC = @.

instructions are very useful e.g. in shifting blocks

of data.

Comﬁares: (e.g.) CPI

NB CPIR is the same as CPI except that the operation is

Compare A : (HL)
HL « HL+1
BC « BC-1

Note that these

repeated until either A=(HL) or BC=@. The two decrement
'increment' counterparts except

instructions are as their
that DE,HL are decremented instead of incremented.
Note that these instructions are very useful e.g. in

string processing applications.

67

Ty

iii) ‘Inguts: (e.g) INI : (gi)::égil Peripheral device address
B < B+l

E

INIR is the same as INI except that the operation

is repeated until B=@. The two decrement instructions

are as their 'increment' counterparts except that HL

is decremented instead of incremented. These instructions
are useful e.g. in fast data-logging environments.

iv) Outputs: (e.g) OUTI : (C) Peripheral device address* (HL)
T HI— HL+1
B <B-1

NB OTIR is the same as OUTI except that the operation
is repeated until B=. The two decrement instructions
are as their 'increment' counterparts except that
HL is decremented instead of incremented.

Flags affected: (Refer to Zilog manual or Appendix 1).

68

2,18 INTERRUPTS

Not a great deal is going to be said here about the various interrupt
modes and operations available with the 280 microprocessor. A number
of the books in the bibliography deal generously with interrupt
programming and it is therefore wasteful to merely reproduce that
information here.

Seven instructions exist for interrupt programming on top of the
"D I,A' instruction discussed in section 2.1.4. Two of these
deal with enabling interrupts, two with returning from interrupt
routines, and three with setting the 'mode' or type of maskable
interrupt response.

i) Enabling interruats

MNEMONIC HEX CODE ACTION

DI F3 Disable interrupts. This stops
the CPU from recognising any
maskable interrupts.

EI FB Enable interrupts. Enables
the CPU to recognise the
occurrence of maskable interrupts.

ii) Returns
TSETTVSTTITITINTY

There are two kinds of interrupt, maskable andmn-maskable, and
Both of their service operations dictate that a different
'return from subroutine' be used instead of the normal 'RET'

instruction.
MNEMONIC HEX CODE ACTION
RETI ED4D Return from a maskable interrupt
service routine.
RETN ED45 Return from a non-maskable.

interrupt service routine.

iii) Interrugt modes

MNEMONIC HEX CODF ACTION
IMO ED46 Set interrupt mode @
IM1 ED56 Set interrupt mode 1
IM2 EDSE Set interrupt mode 2.

DOoEoEEDEEDEEEDEE

69

THIS PAGE INTENTIONALLY LEFT BLANK.

70

APPENDIX 1

Z80 INSTRUCTION TABLES

71

the following pages. Three sets of tables are present and these consist

of:

books and due acknowledgement to Zilog UK is hereby made for this.

The complete Z80 Microprocessor instruction set is given in

Z80 INSTRUCTION TABLES

a) 280 instructions sorted by mnemonic,

b) 280 instructions sorted by op-code,

c) details of operation, timing and effeets on flags.

All these tables are reprinted from Zilog data sheets and

A.1.1 Z80 INSTRUCTIONS SORTED BY MNEMONIC
o T]

o8l SOURCE o SOul o84 SOURCE

cooe STATEMENT COOE STATEMENT COO0E STATEMENT
BE ADC A, (HL) F009 ADD IV, 8C CB4D BITT. L
DDBEOS ADC A (I1X +d) FD19 ADD 1Y DE CB56 8IT 2. (HL)
FDBEOS ADC A (1Y +4) FD29 ADD 1Y 1Y DOCBO556 BIT 2 (I1X +d)
8F ADC A A FD39 ADD 1Y SP FDCBO556 B8IT 2 (1Y +d)
88 ADCA. 8 Ao AND (HL) cBs? BIT2 A

89 ADC A.C DDA605 AND (IX +d) C850 8iT2.8

8A AODC A D FDAG05 AND (IY +d) cBs1 8IT2.C

88 ADC A E A7 AND A cBs2 81T2. 0

8C ADC A H A0 AND 8 ces3 8IT2 E

80 ADC A L Al ANO C CBS4 8IT2. H
CE20 ADC A N A2 AND D cess BIT2. L
ED4A ADC HL_BC A3 AND E CBSE 81T 3, (ML)
EDSA ADC HL, DE A4 AND H DOCBOSS€ 8IT 3 (I1X +d)
€ED6A ADC HL HL AS AND L FDCBOSSE B8IT 3 (IY +d)
EDJJA ADCHL.SP E620 AND N CBSF 8IT3 A

86 ADD A, (ML) CB46 81T 0, (HL) cesé 8IT1.8
DD8605 ADD A (IX +d) DDCBO546 BIT O, (I1X +d) cBs9 8IT3.C
FDB6OS ADD A, (IY +d) FOCBOS46 BITO, (1Y +a) CBSA BIT3.0

87 ADD A A cBa7 8ITO0 A [o:11] BITIE

80 ADD A 8 Ca40 8iT0.8 cBsC 8IT3 H

81 ADD A, C Caa1 81T0,C CBsD T3 L

82 - ADD A, D CB4a2 8iT0,0 CB66 BIT 4, (HL)
83 ADD A, £ CB43 BITQE DDCBOS66 BIT 4 (IX +d)
84 ADD A 4 CB44 B8ITO, A FDCBOS66 BIT 4 (1Y +d)
85 ADD A, L CBas 8ITO, L ces? BIT4 A
c620 ADD A N CB4E 81T 1, (ML) CB60 8iT4 8

09 ADO HL. BC DDCBOS4E 8T 1. (1X +d) CB61 BIT4. C

19 ADD HL, DE FOCBOS4E BIT 1 (1Y +d) 862 8IT4. 0

29 ADD HL, HL CB4aF 8IT1 A CB63 BIT4 E

k] ADO HL, SP 8C48 8IT1.8 CB64 BITA H
0009 ADD I1X BC CB49 8IT1.C CB6s BITa, L
0019 ADO iX, DE CBeA 8iT1. 0 CB6E BITS, (ML)
D029 ADD IX, IX CB48 BIT1 E DDCBOS6E BIT S, (I1X +d)
0039 ADO iX SP CB4C BITILH FDCBOS6E_BITS (1Y +d)

72

Reprinted courtesy of Zilog

084 SOURCE 08’ SUUHCE oas SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT
CB6F BITS A 0D28 DEC I1X n LD (HL). C
cBés BITS. 8 FD28 DEC 1Y 72 LD (HL). D
C869 BITS. C 20 DEC L 73 LD (HL) E
CBa6A BITS D 38 DEC SP 74 LD (HL). H
CcB68 BITS E F3 o] 5 LD (HL). L
CB6C BITS H 102€ DINZ DIS 3620 LD (HL). N
CB6D BITS L F8 El DD7705 LD (IX +d) A
care BIT 6. HL) €3 EX (SP) HL DD7005 LD (IX +d). 8
DODCBOS76 BIT 6, (IX +d) DOE3 EX (SP). 1X 007105 LD (IX +d). C
FDCBO0576 BIT 6, (1Y +d) FDE3 EX (SP), 1Y DD7205 LD (IX +d). D
[o:Y2) BIT6 A 08 EX AF AF’ DD7305 LD (IX +a), E
ca70 BIT6.8 €8 EX DE. HL DD7405 LD (IX +d). H
can BIT6.C D9 EXX DO7505 LD (1X +d), L
cB72 8iIT6. D 76 HALT DD360520 LD (IX +d). N
c873 BIT6, € ED46 MO FD7705 LD (1Y +a) A
cB74 BIT6 H EDS6 M1 FD7005 LD (1Y +d). B
cars BIT6 L EDSE M2 FD7105 LD (Y +d). C
CB7E BIT 7 (HL) ED78 INA, (C) FD7205 LD (1Y +d). D
DOCBOS7E BIT 7, (IX +d) 0820 INA_(N) FD7305 LD (1Y +a) E
FDCBOS7E BIT 7 (1Y +d) ED40 INB, (C) FD7405 LD (1Y +d) H
CB7F BIT7 A ED48 INC, (C) FD7505 LD (1Y +d), L
ca78 BIT7.8 EDS0 IND. (C) FD360520 LD (1Y +d). N
cB79 BIT7,C £D58 INE, (C) 328405 LD (NN)_ A
CB7A BIT7.D €060 INH, (C) ED438405 LD (NN) BC
ca’8 BIT7 E €068 INL,(C) ED538405 LD (NN) DE
CBIC BIT7. H 34 INC (HL) 228405 LO (NN} HL
c8a70 BIT7 L DD3405 INC (IX +d) DD228405 LD (NN). IX
DCB8405 CALL C.NN FD3405 INC (1Y +4d) FD228405 LD (NN) 1Y
FCBA0S CALL M_NN 3c INC A €D738405 LD (NN) SP
D48405 CALL NC. NN 04 INCB 0A LD A, (BC)
CD8405 CALL NN 03 INC B8C 1A LD A, (DE)
C4B405 CALL NZ NN oC INCC 3 LD A (HL)
F48405 CALL P, NN 14 INC D DD7E05 LD A (IX +a)
ECB405 CALL PE_NN 13 INC DE FD7E0S LD A, (1Y +d)
£48405 CALL PO. NN [INCE 3AB405 LD A, (NN)
CC8405 CALL Z NN 24 INCH 7F LDA A

3F CCF 23 INC HL 8 LDA. B

8E CP (HL) 0023 INC 1X 79 LDAC
ODBEOS CP (iX +d) FD23 INC 1Y 1A LDA D
FOBEOS CP(IY +d) 2 INC L 8 LDAE

BF CPA 33 INC SP C LDA H

88 cPB EDAA IND EDS7 LDA I

89 cPC EDBA INDR 70 LDA. L

BA CPD EDA2 INY 3E20 LDA N -
88 CPE EDB2 INIR 46 LD 8. (HL
8C CPH €9 JP (HL) DD4605 LD B (IX +d)
80 cPL ODE9 P ax) FD4605 LD B (IY +d)
FE20 CPN FDE9 JP (1Y) 4 LD B A
EDA9 CPO DAB405 JPC NN 40 LDB.8
€089 CPOR FABAOS JPM NN 4 LD8.C
EDAL CP D28405 JP NC NN 42 LDB.D
EDBY CPIR C38405 JP NN 43 LDB E

2F CPL C28405 JP NZ NN 44 LD B, H NN
27 DAA F28405 PP NN 45 LDB. L

3% DEC (HL) EAB405 P PE_NN 0620 LDB. N
DD3I505 DEC (IX +d) €28405 ® PO.NN ED4B8405 LD BT, (NN)
FD3505 DEC 1Y +4d) CAB40S JPZ NN 018405 LD BC. NN
30 DEC A 382€ JRC, DIS 4E LD C. (HL)
05 DECH 182€ JRDIS DD4E05 LD C. (IX +d)
o8 DEC EC 302€ JRNC. DIS FD4€05 LDC (1Y +d)
00 DECC 202€ JRNZ DIS aF LDC. A

15 DECD “ 282€E JRZ OIS 48 LoC. 8

18 DEC CE 02 LD (BC), A 49 LdC.C

10 DECE 12 LD (DE). A 4A LbC.0

25 DECH n LD (HL), A 48 LDC. €

28 DEC HL 70 LD (HL). B 4C LDC. H

73

Reprinted courtesy of Zilog

ol ¥]

08J SOURCE SOURCE [e]-3] _“SOURCE

CODE STATEMENT CODE STATEMENT CODE = STATEMENT
4D LDC L 008605 OR (1X +d} CB9F RES3 A
0€E20 LOC N FDB60S OR (IY +4) c898 RES3 B

56 LD D.tHL) 87 OR A cB99 RES3 C
0D5605 LDD. (IX +d) 80 OR 8 CB9A RES3 O
FD5605 LD D. (1Y +d) 81 ORC cB98 RES 3 E

57 LDD. A 82 OR O cB9C RESI H

50 L0D.B 83 ORE CB9D RES3 L

51 L00.C B4 ORH CBA6 RES 4 (HL)
52 L0D O 85 OR L DOCBOSA6 RES 4 (IX +d)
53 LDD E F620 ORN FDCBO5A8 RES4 (IY +d)
54 LDO H €088 OTOR CBA7 RES4 A

55 LDD. L EDB3 OTIR CBAO RES4 8

1620 LOD. N €079 ouT (C) A CBAI RES4 C
EDSBB40S LD DE (NN) €041 ouT (C) B CBA2 RES4 D
118405 LD DE NN ED49 ouT IC).C CBA3 RESA E

S€ LD E (HL) EDS! ouT (C) O CBA4 RESA H
DD5EO5 LDE (IX +a) EDS9 ouT () E CcBAS RES4 L
FDSEQS LDE (1Y +d) ED61 ouT (C) H CBAE RESS. (ML)
5F LDE A €069 OuT (C) L DDCBOSAE RESS (1X +d)
58 LDE B D320 OUT IN) A FDCBOSAE RESS (1Y +0)
59 LDE C EDAB ouTD CBAF ARESS5 A

SA LDE D EDA3 ouTi CBAS RESS. B

58 LDE E 1 POP AF CBA9 RESS C

sC LDE H C1 POP BC CBAA RESS. D

50 LDE L D1 POP DE CBAB RESS E

1€20 LDEN (3] POP HL CBAC RESS H

66 LD H_(HL) 0DE POP 1X CBAD RESS. L
006605 LOH ux+ad) FDE POP 1Y CBB6 RES 6. (HL)

F D606 LDH (1Y +d) (3] PUSH AF DDCBOSB6 RES6. (1X +d)
67 LDH A cs PUSH BC FDCBOSB6 RESH. (1Y +d)
60 LOH B 05 PUSH DE Io:1:}] RES6 A

61 LOH.C €5 PUSH HL CB80 RES6. B

62 LDH. O DDES PUSH IX cB8l RES6.C

63 LOH E FDES PUSH 1Y CcB82 RES6. D

64 LDH H CB86 RES O (HL)

65 LOH L DOCB0586 RES 0 (IX +d) E::: by M

2620 LDH N FOCBOSB6 RESO. 1Y +a) Ca8s RES 6. L
2A8405 LD HL.(NN) ces? RESO.A CBBE RES 7. (HL)
218405 LD HL NN €880 RESO0.8 DDCBOSBE RES 7. (X +a)
€047 LD1 A 881 RES0.C FOCBOSBE RES7 (1Y +a)
DD2AB405 LD IX. (NN} c882 RES0.D CBBF RES7 A
DD218405 LD IX, NN 883 RES O E CBBs RES 7.8
FD2AB405 LD IY, (NN) c884 RES 0 H ceg9 RES7 C
£D218405 LDIY, NN cB8s RES 0. L c8BA RES? O

13 LD L. (HL) CBBE RES 1. (HL) cB8e RES 7 E
DD6EOS LD L. (1X +d) DOCBOSBE RES 1. (IX +0) CBEC RES7 H
FDGEOS LD L. (1Y +d) FDCBOSBE RES 1 (1Y +d) CBBOD RES7 L

6F LDL. A CB8f RES 1 A c9 RET

68 LoL. B cB8s8 RES1 8 08 RET C

69 oL.Cc CB89 RES1.C 8 RETM

6A LoL.0 CBBA RES1 D 00 RET NC

68 LOL.E cB8B RES 1 E co RET NZ

6C LDL.H cBscC RES 1. H () RETP

60 oL U cB80 RES 1. L €8 RET PE

2E20 LDL.N CB96 RES 2 (HL) €0 RET PO
ED788405 LD SP (NN) DDCBU596 RES 2, (1X +d) c8 RET 2

F9 LD SP. HL FDCBO596 RES 2. (1Y +d) 040 RET!

DDF9 LOSP iX ce97 RES2 A €045 RETN

FDF9 LD SP. 1Y CB90 RES 2.8 16 AL (M

318405 LDSP NN cBo RES 2, C c8 L (HL)
€DAS LDO c892 RES2 D DDCBO516 AL {IX +d)
€088 LODR c893 RES 2 E FDCBO516 AL 1Y +d)
€DA0 Lo CB94 RES 2. H csn? AL A

£0B0 LDIR cB9S RES 2. L C810 ALB

ED44 NEG CB9E RES 3, (HL) can RLC

00 NOP DDCBOS9E RES 3, (IX +d) can RLOD

86 OR (HL) FOCBOS9E RES 3 (1Y +q) CB13 RL E

74

Reprinted courtesy of Zilog

08y SOURCE 084 SOURCE 081 SOURCE
CODE STATEMENT COoDE STATEMENT CODE STATEMENT
cB14 RLH caco SETO0.8 CBFE SET 7, (HL)
cB15 RLL [of:T03] SETO0.C DOCBOSFE SET 7, (IX +d)
17 RLA cec2 SETO0.D FODCBOSFE SET 7, (1Y +d)
CB06 ALC (HL) CBC3 SETO.E CBFF SET7 A
DOCBOS06 RLC {IX +d) CBCa SETO.H CBF8 SET 7.8
FDCB0506 RLC (1Y +d) CBCS SETO, L CBF9 SET7.C
cso? RLC A CBCE SET 1, (HL) CBFA SET?7.0
CBOO RLCB DDCBOSCE SET 1, (IX +d) CBF8 SET 7. E
[o1: 1]} RLCC FDCBOSCE SET 1, (Y +d) CBFC SET7 H
CB02 RLCD CBCF SET 1. A CBFOD SET 7. L
[of:Tok] ALCE Cc8Cs SET1.8 CcB26 SLA (HL)
CBO4 RLCH CBCS SET1.C DDCBO526 SLA (IX +di
CB0S RLC L CBCA SET1.D FDCB0526 SLA (1Y +d)
07 RLCA cacs SET 1, E cs27 SLA A
ED6F RLD CBCC SET 1. H C820 SLAB
CBIE RR (HL) CBCD SET 1. L ca2y SLAC
DOCBOSI1E RR (IX +d) CBD6 SET 2, (HL) cB22 SLAD
FDCBO5S1E RR (1Y +d) DDCBOSD6 SET 2. (I1X +a) c823 SLAE
CB1F RR A FOCBOSD6 SET 2, (1Y +d) CB24 SLAH
ces RR B caD? SET2 A cB2% SLA L
ce19 RRC CBDO SET2.8 CB2E SRA (HL)
csia RR D csDy SET2.C DOCBOS2E SRA (IX +d)
o131} RRE c8D2 SET2. D0 FDCBOS2E SRA (1Y +d)
ceicC RRH [of: k] SET 2. E CB2F SRA A
cB1D RR L CBD4 SET2. H cs28 SRA B
1F RRA [of: 10 SET2.L C829 SRAC
CBoOE RRAC (HL) c8D8 SET 3.8 CB2A SRA D
DDCBOS0E RRC (IX +9) CBDE SET 3. (HL) cs28 SRA E
FDCBOSOE RAC (1Y +d) ODCBOSDE SET 3, (IX +4d) cB2C SRA H
CBOF RRC A FOCBOSDE SET 3, (1Y +d) cB820 SRA L
cao8 RRCSHB - CBOF SET3 A CB3E SRL (HL}
c809 RRCC Cc809 SET3.C DDCBOS3E SRL (IX +d)
CB0A RRC D CBDA SET 3.0 FDCBOS3E SRL (1Y +d)
csoa RRCE [of: 0] SET3 E CB3F SRL A
[o:11 of RRC H CB80C SET3 H C838 SRL B
CB0D RRC L CBDD SET3. L C839 SRLC
OF RRCA CBE6 SET 4 (HL) CBa3A SRLD
ED67 RRO DOCBOSES SET 4_(iX +d) CB38 SRL E
c? RSTO FDCBOSE6 SET 4 (1Y +d) CB3C SRLH
07 RST 10H CBE? SET 4 A CB30 SRL L
OF RST 18H CBEOQ SET4. B 96 SUB (HL}
€7 RST 20H CBE1 SET4.C 009605 SUB (IX +d)
EF RST 28H CBE2 SET 4.0 FD9605 SUB (1Y +d)

1 F7 RST 30H CBE3 SET4 E 97 SUB A

: FF RST 38H CBE4 SET 4. H 90 sus 8

f CF RST8 CBES SET 4, L 9 suB C
9E SBC A (HL) CBEE SET S5, (HL) 92 sus 0
DO9EODS SBC A (I1X +d) DDCBOSEE SET S, (IX +d) 93 SuB E
FD9EOS SBC A (1Y +4d) FOCBOSEE SET S5 (1Y +d) 94 SUB H
9F SBC A A CBEF SETS5 A 95 SuB L
98 SBCA 8 CBES SETS5. 8 D620 SUB N
99 SB8CA.C CBE9 SETS,C AE XOR (HL}
9A SBC A, D CBEA SETS.D DDAEOS XOR (IX +d)

. 98 SBC A E CBEB SETS. E FDAEOS XOR (1Y +d)

- 9C SBC A H CBEC SETS. H AF XOR A

g 90 SBC A, L CBED SETS, L A8 XOR 8

: DE20 SBC A N CBF6 SET 6, (HL) A9 XOR C

3 ED42 SBC ML BC DDCBOSF6 SET 8, (IX +d) AA XOR D
EDS2 SBC HL. DE FOCBOSF6 SET6, (1Y +d) A8 XOR E
ED62 SBC HL HL CBF7? SET6, A AC XOR H
EDT72 SBC HL, SP CB8FO SET6.8 AD XOR L
37 SCF CBF1 SET6.C EE20 XOR N
CBC6 SET 0, (HL) CBF2 SET6.0
DDCBOSCS SET O, (I1X +d) CBF3 SET6.E

: FOCBOSCS SET Q. (1Y +d) CBFa SET6.H

5 cec? SETO0 A CBFS SET6, L

Reprinted courtesy of Zilog

75

[¢] ¥} SOURCE s SOURCE 08 SOURCE
[ofo]e] 3 STATEMENT Laue STATEMENI COLe STATEMENT
00 NOP 63 LOH E €620 AODA N
018405 LD BC. NN 64 LOH M c7 HST O
02 LD (BC) A 65 LOn L cs8 RET Z
03 INC BC 66 LOH_(HL) c9 RET
04 INC B 67 LDH A CAB405 P Z NN
05 DEC 8 68 oL 8 CCBAOS CALL Z NN
0620 LDB. N 69 oL C CDB405 CALL NN
07 RLCA 6A 0. 0 Ck20 ADC A N
08 EX AF AF° 68 DL E CF HST 8
09 ADD HL BC 6C DL H 00 RET NC
0A LD A (BC) 60 oLt o1 POP DE
08 DEC BC 6€ LD L. iHL) D28405 JP NC.NN
oC INCC 6F LDL. A D320 OUT IN). A
00 DECC 70 LO(HLL B D4B4a0s CALL NC. NN
0€20 LDC.N n LD (HL). C DS PUSH DE
OF RRCA 12 LD ML), D D620 SUB N
1026 DJNZ DIS 3 LD (HL). E D7 AST 10H
118405 LD DE, NN 4 LD (HL), H 08 RETC
12 LD (DE). A 7% LD (ML), L 09 EXX
13 INC DE 16 HALT DAB405 JPC NN
14 INCD 17 LD (HL), A DB20 IN A (N}
15 DEC D 8 LDA B 0CB405 CALLC N
1620 LDO.N i) LDA.C DE20 SBCA N
" RLA 1A LDA O OF AST 18H
182€ JRDIS 8 LDA ¢t €0 RET PO
9 ADD ML, DE c LDA H 3 POP HL
1A LD A, (DE) 0 LDA L £28405 JP PO NN
18 DEC DE 1€ LD A (HL) [¥] EX (SP) ML
1c INC € N LDA A E48405 CALL PO. NN
0 DECE 80 ADD A B €5 PUSH HL
1€20 LDE. N W ADD A C £620 AND N
IF RRA 82 ADD A O 3] AST 20 M
202¢ JR NZ, OIS 83 ADD A t EB RET PE
218406 LD HL, NN '™ ADD A H E9 JP (ML)
228406 LD (NN). HL 85 ADD A L EAB405 JE PE NN
3 INC HL 86 ADD A (HL) 1] EX DE, HL
24 INCH 47 ADD A A ECB405 CALL PE NN
% DECH ™ ADC A 8 EE20 XOR N
2620 LOH. N 89 ADC A (EF AST 28H
27 DAA A AOC A U FO RET P
282€ JRZ DIS '™ ADC At F1 POP AF
» ADO HL. HL e ADC A H F28405 JPP NN
2A8405 LD (HL), (NN) 80 ADC A L F3 [+]]
28 DEC ML ot AUC A (HU) F4B405 CALLP NN
xc INC L " ADC A A 5 PUSH AF
20 OECL 90 sus 8 F620. OAN
2€20 oL N 91 suBC £7 AST 30H
¥ crL a2 SUB O F8 RET M
302e IR NC, DIS 9 subt Fo LD SP ML
318406 LDSP. NN 9a SUB FABA0S JPM NN
328408 LD (NN), A 9 SuB L f8 &
:3 INC SP 96 SUB (ML) FCB40S CALL M NN
% :,"E%"":‘l:) 91 sub A FE20 CPN.
3620 LD (HLI. M > uca s FE AST 38
3 sce 9y SHC A C 800 ALC B
182€ JRC.DIS 2 seca D ceor N
39 ADD HL_SP 9 SHC At cBo2 ALC D
JAB405 LD A. (NN) ¢ SHC A 803 RLC E
- DEC $P 90 SBC A L “ CBO4 ALCH
3 INC A 9¢ SBC A (HL) CB0S RLCL
0 DEC A 9F SBCA A C806 ALC (HL)
3€20 -LDA.N A0 AND 8 8o’ RLC A
I CCF Al ANO C CB08 RRC 8
“© L08 B A2 ANO O ceos RACC
“ LDB.C Al AND € CB0A RRC D :
) L08.0 s AND L cood et
“a D8 E AS o o c8oC RRC H
“ LD B H NN A6 AND (HL) c80D ARC L
“ 0B ¢ A7 AND A CBOE ARC (HL)
% LD 8 (HL) A8 XOR 8 CBOF ARC A
47 LD8 A A9 XOR C c810 RL B
48 LDC.B AA XOR O cen RLC
© DC C A8 XOR € cBi2 AL O
4A L0C. 0 AC XOR H CB\3 RL E
48 \0C € AD XOR L Ccai4 RLH
«C OC H AE XOR (HL) cB1S AL L
0 LDC 1 AF XOR A cB16 AL (HL)
, 80 ORB cB1? RL A
:: tgﬁ :U 81 ORC cers LY
50 LD 0.8 82 ORD 819 HRC
51 LDD’C 83 ORE CB1A RR D
52 L0D O 84 OR H cBie RRE
53 DD E 85 OR L cBIC RA H
54 LDD H 86 OR (ML) cBID RA L
55 L0 O'L 87 OR A CBt AR (HL)
% LD D. (HL) 88 cre CBIF AR A
57 LDOD A 89 cPC cs20 SLA B
58 LDE. B 8A cro 821 SLAC
59 LDE.C 88 cPE cB22 SLA D
5A LDE O 8C CPH €823 SLAE
: 80 cPL
58 LDE E . CB24 SLA M
sc LDE H 8E CPAHL) c825 SLAL
50 DE L uf CP A CB26 SLA (HL)
: co HET N2 cB27 SLA A
113 LDE. (HL) - POP BC
oF LDE A o 828 SRA 8
60 oW 8 28405 P NZ NN 829 SAA C
pos onc C3sa05 P NN CB2A SRA D
o2 on’s CaB405 CALLNZ NN CB28 SRA £
cs PUSH HC c82C SHA

76

Reprinted courtesy

of Zilog

]

o8l SOURCE 08J SOURCE o84 SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT
C820 SRA L c877 BIT6. A cB89 RES7.C
CB2E SRA (HL) cars BIT7.8 CBBA RES?. 0
CB2F SRA A c8e79 BIT7.C cess RES 7. E
[o:k1} SAL B CB7A BIT7,.D [o1:1:] RES7.H
cB39 SRL C ..s [o3:7]:] BIT? E cseo RES7 L
CB3A SRLD carc BIT7. H CBBE RES 7 (HL)
c838 SRLE CcB70 BIT7. L CBBF RES7 A
€83Cc SRL H CB7€ BIT 7, (HL) CBCo SETO0.8
€830 SAL L CB7F BIT7 A caci SETO0.C
CB3E SRL (HL}) Cc880 RES 0.8 cBc2 SETO0.0
CB3F SRL A [¢:"}] RESO,C CBC3 SETO.E
CB40 8ITO0. 8 cB82 RESO.D CcBCa SETOH
caa 8iITO, C [of: - K] RESO.E CBCS SETO. L
CB42 BIT0. 0 CcB84 RESO H CBC6 SET O, (HL)
CcB4al BITO E €885 RESO. L cec? SETO A
CB44 BITO. H CB86 RES O, (HL) cecs SET1.8
CcBas BITO L ces? RESO. A c8c9 SET1.C
CB46 BIT 0. (HL) cess RES 1. B CBCA SET1.D
CcB47? BITO A cB89 RES 1. C cecs SET1 E
cB48 BIT1.8 CBBA RES1.D CBCC SET 1 H
CB49 BIT1 C [o:1:1:} RES 1, E CcB8co SET 1 L
CB4A B8IT1. D [o1:1:19) RES 1. H CBCE SET 1 (HUL)
848 BIT1 E 880 RES 1, L CBCF SET 1 A
cBaC BIT1 H CBBE RES 1. (HL) €800 SET2 8
CBaD BIT1 L CBBF RES 1. A CBO1 SET2.C
B4k BIT 1 (HL) €890 RES2 B Cc802 SET2.0
CBaF BIT1 A cBe9l RES?2 C Cc80D3 SET2 E
€850 8IT2.8 CB92 RES2 O CcBD4 SET2 H
CcBsS1 BIT2.C CB93 RES 2. E [o1: 10) SET2.L
cBS2 BIT2 D CB94 RES 2, H CBD6 SET 2, (HL)
[¢:LX] BIT2 E cB9s RES 2. L Cc807 SET2 A
CB54 BIT2 H CB96 RES 2, (HL) csD8 SET3.8
. B55 8IT2 L Cc897 RES2. A cBD9 SET3C
B56 BIT 2 (HL) CB98 RE53 8 CBDA SET3 0
857 8IT2 A c899 RES3.C csos SET3 E
858 8IT3 8 ca%a RES 3.0 c80C SET3 H
'H59 BIT3 C [o3:11:] RES 3. E C80D SET3 L
.B5A BIT3. D C89C RESJI H CBODE SET 3. (HL)
c8s8 BIT3 € C890 RES 3. L CBOF SET3 A
CB5C BIT3 H CB9E RES 3 (HL) CBEO SET4 B
CcBs50D BIT3 L CB9F RESJ A CBE1 SETA4 C
CBSE BIT 3. (HL) CBAO RES4 B CBE2 SET4 O
CBSF BIT3 A CBA1 RES 4. C CBE3 SET4 E
CB60 BiTa 8 CBA2 RES4 D CBE4 SET4 H
CB861 BITa C CBA3 RES4 € CBES SET A L
CB62 8iT4 0 CBA4 RES4 H CBE6 SETa (ML)
CcB63 BIT4 E CBAS RES 4 L cBE? SET4 A
CB64 BIT4 H CBA6 RES 4 (HL) CBEB SETS5 8
CB6S BIT4 L CBA? RES 4 A CBE9 SETS C
CB66 BIT 4, (HL) BAS RESS5 B CBEA SETS D
CcB67 BiTa A CBA9 RESS C CBEB SETS €
CB68 BITS5 8 CBAA RESS. O CBEC SETS H
CB69 B8iT5 C CBAB RESS & CBED SETS5 L
CB6A 8ITS5. D CBAC RESS H CBEE SETS (HL)
caes BITS E CBAD RESS. L CBEF SETS A
CB6C BITS H CBAE RES S (HL) CBFQ SET6 B
CB860D BITS L CBAF RES S5 A CBF1 SET6.C
CB6E BITS, (HL) ceso RES6.8 CBF2 SET6.D
CB6F BITS5 A cas1 RES6 C CBF3 SET6 E
ca70 8IT6.8 ces2 RES6, D CBF4 SET6 H
can BIT6 C CcBB3 RES6 E CBFS SET6. L
ce72 “BIT6,0 CBB4 RES6. H CBFé6 SET6. (HL)
cB73 BIT6 E [o-1-1 RES6, L cas? SET6 A
ce4 BIT6E H [of:-1:1) RES 6. (HL) CBF8 SET7.8
CcB7s BITE, L [o1:1:74 RES 6. A CBF9 SET7 C
CB76 BIT6. (ML) c888 RES7. B CBFA SET?7.0

77

Reprinted courtesy of Zilog

o8y SOURCE 08 SOURCE o8y SOURCE

CO0E STATEMENT [ofels] 3 STATEMENT CODE. = STATEMENT
CBFB SET7.E DOCBOSBE RES 7. (X +1) 7023 INC 1Y

CBFC SET 7 H DOCBO5C6 SET 0. (1X +d) FD29 ADD 1Y, 1Y
CBFD SET7.L DOCBOSCE SET 1. (IX +d) FD2A8405 LD 1Y, (NN)
CBFE SET 7, (HL) DOCBOS06 SET 2 (1X +d) FD28 DEC 1Y

CBFF SET7.A DDOCBOSDE SET 3. (1X +d) FD3405 INC (1Y +d)
D009 ADD IX_BC DOCBOSEE SET 4. (IX +d) FD3505 DEC (1Y +a)
0019 ADD IX" DE DDCBOSEE SETS (1X +d) FD360520 LD (1Y +d). N
DD218405 LD IX NN DOCBOSF6 SET6. (I1X +d) FD39 ADD IY, SP
DD228405 LD (NN}, IX DOCBOSFE SET 7 (1X +d) FD4605 LD B, (1Y +d)
0023 INC IX €D40 N B, (C) FD4EOS LDC.(IY +d)
0029 ADD IX_ IX EDa) our ic). 8 FO5605 LD D. (Y +d)
DD2A8405 LD IX. (NN) €Da2 S8C HL. BC FDSEOS LD E. (1Y +d)
0028 DEC 1X €D438405 LD (NN). BC FDG605 LD H, (IY +d)
DD3405 INC (IX +d) €D44 NEG FD6EOS LD L. (1Y +d)
DD3505 DEC (IX +d) ED45 RETN FD7005 LD (1Y +d). B
DN360520 LD (X +d). N EDa6 M0 FD7105 LD (IY +4).C
L0398 ADD IX_SP ED47 LDI.A FO7205 LD UV +d). 0
004605 LD B (IX +d) €048 INC.(C) FO7305 LD (IY +d).E
DD4EOS LD C. (IX +d) ED49 out (€).C FD7405 LD (IY +d). H
0D5605 LD D, (1X +d) ED4A AOC HL. 8C FO7505 LD (IY +d). L
DDSEOS LD E. (1X +d) £D4BB40S LD BC. (NN) FD7705 LD (IY +d), A
DD660S LD M. (IX +d) ED4D RET) FD7E0S LD A, (IY +d)
DD6EOS LD L. (IX +d) €DS0 IND.(C) FDB60S ADD A, (IY +d)
CO7005 LD (IX +d). B EDS1 0ouT (C). D FDBEOS ADC A, (1Y +d)
DD7105 LD (IX +a) C €052 SBC HL. DE FD9605 SUB (IY +d)
007205 LD (IX +d).D EDS38405 LD (NN).DE FDYEOS SBC A, (IY +d)
007305 LD UX +d). E ED56 M1 FDA605 AND (1Y +d)
007405 LOUX +d) H D57 LA FDAEOS XOR (IY +d)
007505 LD (X +d) L €058 INE. (C) FDB605 OR (IY +d)
DD7705 LD (IX +d). A 5039 QuT 1. E FDBEOS CP (1Y +a)
DD7EQS LD A, (IX +dl Oy 3 FDE1 POPIY
008605 ADD A, (IX +d) E£DSE "z FDE3 EX (SP), 1Y
DDBEOS ADC A (I1X +d) £D60 INH (C) FDES PUSH IY
009605 SUB (IX +ad) ED61 OUT (C). H FDE9 # 1Y)
DD9EOS SBC A (IX +d) £D62 SBC HL. HL FOF9 LDSP 1Y
DDAB0S AND (IX +d) €067 RROD : FOCBO506 RLC (1Y +d)
DDAEOS XOR {I1X +d) ED68 N L (C) FOCBOS0E RRC (1Y +d).
DDB605 OR (IX +d) £069 OUT}(Cl L FOCBO516 RL (1Y +4a)
DDBEOS CP (IX +d) £06A ADC HL_ L FOCBOS1E RA (1Y +d)
0DE1 POP 1X E06F Ao FOCBOS26 SLA (1Y +d)
DODE3 EX ISP), IX €072 SBC HL. S FDCBOS2E SRA (1Y +d)
DDES PUSH 1X €D738405 LD INN) SP FOCBOS3E SRL (1Y +d)
DDE9 P ax) €078 INA (C) FOCBO546 BIT 0, (1Y +d)
DOF9 LDSP 1X €079 oUT(O) A FDCBOS4E BIT 1, (1Y +d)
DDCBOS06 RLC (IX +a) ED7A ADC HL_ SP FOCBO556 BIT 2. (1Y +d)
DDCBOS0E RRC (1X +d) £0788405 LD SP. (NN} FOCBOSSE BIT 3, (1Y +4)
DDCB0S16 RL (1X +d) EDAO Lo . FDCBOS66 BIT 4 (1Y +d)
DDCBOSIE RR (IX +d) DAl b FOCBOSSE BITS (1Y +d) .
DOCBO526 SLA (1X +d) £0A2 Ny FOCBO576 BIT 6, (IY +d)
DDCBO52E SRA (1X +d) toas ouTs FOCBOS7E BIT 7, (1Y +d)
OOCBOS3E SRL 11X +u) £DA8 LOD FOCB0586 RESO. (1Y +d)
DOCBO546 BIT 0, (1X +u) €DAS PO FDCBOSBE RES 1, (IY +d)
DDCBOS4E BIT 1 (1X +) EDAA NG FDCBOS96 RES 2, (1Y +d)
DOCB0S56 81T 2 (IX +a) £DAB ouTD FOCBOS9E RES 3 (1Y +d)
DDCBOSSE RIT 3 (1X +f) £080 COIR FDCBOSAG RES 4, (IY +d)
DDCBOS66 BIT 4 (IX +d) €081 CPIR FDCBOSAE RES S, (1Y +d)
DDCBOSGE BIT S (1X +u) €082 A FDCBOSB6 RES 6, (IY +d)
DDCBO576 BITG (1X +) €083 OTIR FDCBOSBE RES 7 (1Y +d)
DOCBOSE BIT 7 (X +uh) £088 COOR FDCBOSC6 SET 0, (1Y +d)
DOCBO586 RESO 11X +u) €089 CPOR FOCBOSCE SET 1 (1Y +d)
ODCBOSBE RES 1 (1X +u) £DBA INOR FOCBOSD6 SET 2, (1Y +d)
DDCBOS96 RES 2 (1X +d) €088 oTON FOCBOSOE SET 3. (1Y +d)
DDCBOS9E RES I (1X +u) 009 ADD 1Y BC FOCBOSE6 SET 4, (IY +d)
DDCBOS5A6 RES 4, (1X +d) FD19 ADD iY DE FDCBOSEE SET 5, (1Y +4d)
DDCBOSAE RES 5 (1X +) FD218405 LD 1Y NN FOCBOSF6 SET 6 (1Y +q)
DOCBO586 RES 6. (1X +u) FD228405 LD (NN), 1Y FOCBOSFE SET 7 (1Y +d)

Reprinted courtesy of Zilog

78

A.l.> CPERATION

8 BIT LOAD GROUP

Symbolic Flags Op-Code No.of |No.of M |No.of T
Mnemonic Operation 2 H P/V| N 76 543 210 Hex Bytes | Cycles States Comments
LDr,s r—s e X|® | X || e 01 r s 1 1 4 r,s Reg.
LD n r—n el X|®o| X |0 | e 00 r 110 2 2 7 000 B
- n - 001 c
LD, (HL) r—(HL) | X X 01 r 110 1 2 7 010 D
LD, (1X+d) r = (1X+d) ol X X 11 011101 DD 3 5 19 on E
01 r 110 100 H
- d - 101 L
LD r, (1Y+d) r- (1Y+d) eI X|®|X |0 | e (RERRRIRI} FD 3 5 19 m A
01 r 110
- d =
LD (HL), r (HL) —r e | X X . 01 110 r 1 2 7
LD (IX+d), r (IX+d) -1 ® | X X . 11 011101 0D 3 5 19
01 110 r
- d -
LD (1Y+d), r (1Y+d) =r eI X|® | X |® | e 11 11110 FD 3 5 19
01 110 r
- d -
LD (HL), n (HU) —n e X | e | X |e® | e 00 110110 36 2 3 10
- n -
LD (IX+d), n (IX+d)=-n sl X|® | X|o | @ 11 011101 DD 4 5 19
00 110110 36
- d -
-— N -
LD (1Y+d), n (1Y+d) —~n e/ X o | X e e 1mimmm FD 4 5 19
00 110110 36
—d =
- n -
LD A, (BC) A —(BC) X X | e 00 001010 0A 1 2 7
LD A, (DE) A —(DE) ® | X X |e 00 011010 1A 1 2 1
LD A, (nn) A —(nn) e ! X X 00 111 010 3A 3 4 13
- n -
-— N —
LD (BC), A (BC)—-A e X |e® | X 00 000010 02 1 2 1
LD (DE), A (DE)--A e | X X 00 610010 12 1 2 7
LD (nn), A (nn) —A X|e | X 00 110010 32 3 4 13
-— N -
- n -
LD A, I A-1| JIX 10| X IFF| O 11 101101 ED 2 2 9
01 010111 57
LDA R A-R tix]o|x |IFF|o 11 101101 ED 2 2 9
01 011111 5F
LDI,A I —A o | X |® | X |e e 11 101101 ED 2 2 9
01 000111 47
LD R, A R-—-A e | X | | X |® 6@ 11101101 ED 2 2 9
° 01 001 111 4F
Notes: r, s means any of the registers A, B, C, D, E, H, L

IFF the content of the interrupt enable flip-flop (IFF) is copied inta the P/V flag

Flag Notation:

79

o= flag not affected, 0 = flag reset, 1= flag set, X = flag is unknown,
1= flag is affected according to the result of the operation.

Reprinted courtesy of Zilog

16-BIT LOAD GROUP

Symbolic Figus Op-Code No. of {No.of M| No.of T
Mnemonic Operation S|z H P/V| N| C |76 53 210/ Hex Bytes | Cycles | States Comments
LD dd, nn dd ~ nn . 00 dd0 001 3 3 10 dd Pair
- n - 00 BC
- n - 01 DE
LD IX, nn IX ~ nn . 11011 101| DD 4 4 14 10 HL
00 100 001 | 21 11 Sp
- n o~
- n ~
LD 1Y, nn 1Y - nn . 11 111 101 FD 4 4 14
00 160 601 21 -
- n - -
- n -)
LD HL, (nn) H = (nni1) . 00 107 010 2A 3 5 16
L - (nn} P :
- 0 - :
LD dd, (nn) ddy - (nn+1) . 11101 101 ED 4 6 20 (
dd| -(nn) 01 dd1 011 |
- n -
- n -
LD IX, (nn) IXH= (nn+1) . 11011 101 DD 4 6 20
XL~ (nn) 00 101 010 | 2A
- n —-
- n -
LD 1Y, (nn) IYH =~ (nn+1) . 11 111 101 FD 4 6 20
1YL ~(nn) 00 101 010 | 2A
- n -
- n hnad
LD (nn), HL (nn+1) = H . 00 100 010 22 3 5 16
(nn) = L - n -
- n -
LD (nn), dd (nn+1) = ddy . 11 101 101 ED 4 6 20
(nn) = dd {1 01 dd0 011
- n -
- n -
LD (nn), 1X (nn+1) ~ IXy . 11 011 101 | DD 4 6 20
(nn) = 1X 00 100 010 22 g
- n —- ie
DR i
LD (nn), 1Y (nn+1) ~ 1Yy . 11111101 FD 4 6 20 f
(nn) = 1Y 00 100 010 | 22 i
- n - £
- n - .
LD SP, HL SP -~ HL ° 11 111 001 F9 1 1 6
LD SP, IX SP - IX . 11 011 101 0D 2 2 10 -
11111 001 | F9 H
LD SP, 1Y SP - 1Y . 11 111 101 FD 2 2 10 -
11 111 001 F9 qq Pair
PUSH qq (SP-2) — qq o 11 qq0 101 1 3 'In 00 BC
(SP-1) - qqH 01 DE
PUSH IX (SP-2) - IX . 11 011 101 | DD 2 4 15 10 HL
(SP-1) — IXH 11 100 101 | E5 11 AF
PUSH 1Y (SP-2) — 1Y . 11 11110 FD 2 4 15
(SP-1) = 1YY 11 100 101 3
POP qq qqH ~ (SP+1) . 11 qq0 001 1 3 10
qq = (SP)
POP IX IXH = (SP+1) L] 11 011 101 DD 2 4 14
IXL = (SP) 11 100 001 | E1
POP 1Y 1YH = (SP+1) . 11 111 101 FD 2 4 14
Y —(SP) 11 100 001 El

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
{(PAIR) Y, (PAIR) | refer to high order and low order eight bits of the register pair respectively.
eq BC L =C AFy=A
Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
} flag is affected according to the result of the operation.
Reprinted courtesy of Zilog

80

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

Symbolic Flags 0p-Code No.of |No.of M{No.of T
Mnemonic Operation | S | Z) H# P/V|'N | C [76 543 210 Hex | Bytes | Cycles | States
EX DE, HL | DE-—=HL e |e | X|[®|X|®]|® e [11101011]| EB 1 1 4
EX AF, AF' | AF -—-AF ¢ e | X|®|X]|e|e | e 00001 000 08 1 1 4
EXX BC —-BC’ e e | X |®o | X]|e|e |e l11011001] D9 1 1 4
<DE-DE')
HL=-HL'
EX(SP,HL| H ~=(SP+1) |® [e | X |[® | X |e® | @ | ® 171 100 011] E3 1 5 19
L —(SP)
EX(SP), IX | IXy=~{SP+1){® | @ | X |® | X |® | e | [11011 101 DD 2 6 23
I1X -{SP) 11 100 011] E3
EX(SPLIY | IYy~4SP+1)j® | e | X |® [X | e e | e 11111 101] FP 2 6 23
1Y ~{SP) 11 100 011| E3
O]
LOI (DE)=(HL) |® [e | X [O|X]| }|0]e |11101 101 ED 2 4 16
DE — DE+1 10 100 000| AO
HL ~ HL+1
BC —BC-1
LDIR (DE)=(HL) | [[X | O|X| 0| O] [11101101] ED 2 5 21
DE - DE+1 10 110 000 BO 2 4 16
HL = HL+1
BC - BC1
Repeat until
BC=0
®
LDD (DE)~(HL) |® | o [X |0 | X {1 (0| 11101101 ED 2 4 16
DE - DE-1 10 101 000| A8
HL = HL1
BC - BC-1
LDDR (DE)=(HL) [® |® [X |0 [X |0 |0 |e J11101 101 ED 2 5 21
DE — DE-1 . 10 111 000| B8 2 4 16
HL = HL-1
BC -—BC-1
Repeat until
BC=0
@ ®
CPI A—(HL) b1y xX b x{yfr|eprio1101| ED 2 4 16
HL — HL+1 10 100 001 A1
BC - BC-1
@ ®
CPIR A - (HL) i xdx § |1 |® 11101 101 ED 2 5 21
HL = HL+1 10 110 001 | B1 2 4 16
BC - BC-1
Repeat until
A=(HU or
BC=0
@ @®
CPD A - (HL) b x Xt |1 |e 11101101 ED 2 4 16
HL — HL1 10 101 001 | AS
BC - BC1
@ ®
CPDR A - (HL) Py X | X (s |1]ep10tion] e |2 5 2
HL = HL1 10 111 001| B9 2 4 16
BC - BC-1
Repeat until
A=(HL or
BC=0

Notes: (D P/V flagis 0 if the result of BC-1 = 0, otherwise P/V = 1
@ Zfiagis 1if A= (HL), otherwise Z = 0.

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
3 = flag is affected according to the result of the operation.

81

Comments

Register bank and
auxiliary register
bank exchange

Load (HL) into
(DE), increment the
pointers and
decrement the byte
counter (BC)
IfBC+ 0
1fBC=0

IfBC+#0
IfBC =0

IfBC+ Oand A#(HL)
IfBC=00r A=(HL

IfBC#0and A #(HL)
IfBC=00r A= (HL)

Reprinted courtesy of Zilog

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Symbolic Flags Op-Cude No.of |No.of M |No.of T
Mnemonic | Operation S|2 H P/V| N[C |76 533 210, Hex Bytes | Cycles | States Comments
DAA Convertsacc, | § | ¢ | X[§ | X|P | ® | ¢ [00100 111 27 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCO operands
CPL A-A e o | X | 1| X| e[1 ;00101 111 2F 1 1 4 Complement
: accumulator
(One’s complement)
NEG A-A+1 b x b xiv et oo ED 2 2 8 Negate acc, (two's
01 000 100| 44 complement)
CCF cY-CY e e | X|X|X|®|0]| 00111111 3F 1 1 4 Complement carry
flag
SCF CY-1 e e X|0 | X]|® | 0| 100110111 37 1 1 4 Set carry flag
NOP No operation| ® |® | X |e® | X | e | e ' e 00 000 000| 00 1 1 4
HALT CPUhalted | ® | o X|® | X|®|e | e 01110110 76 1 1 4
DI* IFF - 0 e (o | X|® | X|® e e 11110011 F3 1 1 4
El* IFF - 1 e e X|® | X|®|e]| e 11111011 FB 1 1 4
IMO Setinterrupt | ® |® | X |® | X | ® | e | e 11 101 101| ED 2 Z 8
mode 0 01 000 110 46
IM1 Setinterrupt (@ |® | X |® | X | e e | e (11 101 101 ED 2 2 8
maode 1 01 010 110| 56
M2 Setinterrupt [® |® | X |e | X | e | e | e {11 101 101 ED 2 2 8
mode 2 01 011 110| 5E '

Notes: |FF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.

-
Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, ‘
{ = flag is affected according to the result of the operation.
*|nterrupts are not sampled at the end of El or DI
Reprinted courtesy of Zilog

82

8-BIT ARITHMETIC AND LOGICAL GROUP

Symbolic Flags 0p-Code No.of [No.ofMNo.of T
Mnemonic Operation S | Z H P/V| N | C |76 543 210 Hex | Bytes |Cycles |States | Comments
ADDA,r A-A+r VLY X Py X[V]0 ¢ |10000]r 1 1 4 r Reg.
,, ADD A n A ~A+n Py x| b x|{v]|o]| t[ooo]io 2 2 7 000 B
{ - - - 001 c
010 D
ADD A, (HL) A -~ A+(HL) $ biXPyix|ivi]iog 10110 1 2 7 011 E
ADD A, (tX+d) | A~ A+(IX+d) Vlbixty i xjvio|#tj1nonnio1| oo |3 5 19 100 H
10 (000]110 101 L
- d = m A
ADD A, (1Y+d) | A= A+{IY+d) b Xt X viogpt 1m0l FD |3 5 19
10 [000]110
- d -

ADCA,s A~ Ass+CY tit Xy x|viog| sisany of r, n,

SUB's A-A-s lboxb vl x vt [o10] (HL), (1X+d),

SBCA,s A-A-s-CY | v b x] vl x|v]t1]} 011 (1Y+d) as shown for

AND's A-A Py x| Yix|plolo ADD instruction.

ORs A-A v s by x| Ol x|Plolo The indicated bits

XOR's A-A®s bl X 0Ol X|{P 0|0 replace the [000] in

CPs A-s S S G I N I G VA IR | [T the ADD set above.

INCr r-=r+1 PLbi Xy X{vy]oje 00 r 1 1 4

INC (HL) (HO=(HU+1 | ¢ | 4| x| t| x|V |0 |e j00 110000 1B n

INC (1X+d) (IX+d) - } b X ¢4 X|Vv]|0]|e (11011101 DD |3 6 23

(IX+d)+1 00 110(700)
d
INC (1Y+d) (1Y+d) - } pIX o X[V 0 e 11111101 FD |3 6 23
(1Y+d)+1 00 110(700)
- d -

DECs s~s-1 Pl Xy X|vit|e sisany of r, (HL),
(IX+d), (1Y+d) as
shown for INC.
DEC same format
and states as INC.
Replace with
[101)in OP Code.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operation. Similarly the P symbol indicates parity. V = 1 means avercflow, V = 0 means not overflow, P =1
means parity of the result is even, P = 0 means parity of the result is odd.

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = fiag s unknown.
} = Hag is affected accarding to the result of the cperation.

Reprinted courtesy of Zilog

83

[
16-BIT ARITHMETIC GROUP
¢
Symbolic Flags 0Op-Code No.of |No.of M{No.of T ‘
Mnemonic Operation s |z H P/V] N | C |76 543 210] Hex | Bytes |Cycles | States| Comments
ADD HL,ss | HL = HL+ss ® |® (X | X|X|®]| 0|} |00ss1 001 1 3 1 ss Reg.
00 BC
ADCHL,ss |HL~HL+ss+CY| } | p [X | X| X | V|O0|} 11101101 ED |2 4 15 01 DE
01 ss1 010 # 10 HL
1" SpP
SBC HL, ss HL-HLssCY | ¢ |} | X | X| X | V| 1]} [11101101| ED |2 4 15
01 ssO 010
ADDIX,pp |IX =IX+pp e /e | X | X|[X|®]| 0} (11011101 DD |2 4 15 pp Reg.
00 pp1 001 00 BC.
01 DE
10 1X
1 SP
ADD 1Y, rr 1Y = 1Y +rr e e X I X|X|®| 0]}t 101| FD |2 4 15 13 Reg.
00 rr1 0O1 00 BC
01 DE
10 1Y
n SP
INCss ss - ss+1 e | X |® X |® | e | e |00s0 011 1 1 6
INC 1X IX = IX+1 e (o X |® | X e e | e (11011101 DD |2 2 10
00 100 011 23
INCIY 1Y = 1Y +1 o |e X |e® X |® | e e |11111101] FD |2 2 10
00 100 011 23
DECss s« ss-1 e (o X |® X |e® | e | e |00ss] 011 1 1 6
DEC IX IX «-1X-1 e (o (X |® X |® | e e (11011101 DD |2 2 10
00 101 011 2B
DEC1Y 1Y =1Y-1 e /e X |(® X |e® | e e (11111101 FD |2 2 10
00 101 011 2B
E
Notes: ssis any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, I1X, SP
rr is any of the register pairs BC, DE, 1Y, SP.
Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown. %
} = flag is affected according to the result of the operation. ‘
Reprinted courtesy of Zilog

84

ROTATE AND SHIFT GROUP

Symbolic Flags Op-Code No.of{No.of [No.of
r - "-AMAWA“ A I N R M T
Mnemonic Operation ;S Y4 H V{N|[C (76543210 | Hex |Bytes Cygf. States! Comments
RLCA 1—0 e e X |O|X|e| 0|14 (00000111] 07 |1 1 4 Rotate left circular
A accumulator
RLA CY] 7=—0 e e X |O|X]|®e|O0]|t]00010111] 17 N 1 4 Rotate left
A accumulator
RRCA .. CY e e X |0|X|e|0|t 00001 111| OF 1 1 4 Rotate right circular
A ! !accumulator
i
RRA — 0ty elelx|olx!elo|tlooonnmmitr 0 1 |4 |Rotateright
A accumulator
|
RLCr \ b4 X {0 X pP|O|4|11001 011! CB 2 2 8 Rotate left circular
00 [000] register r
RLC (HL) L4 yIX|]O0OIX [P0]11 001011 CB 2 4 15 |r Reg
00 [000) 110 000 B
001 c
RLC (1X+d) } | g—1a}-/ tl4(xlo{x|Plo|y|nommon|oDla |6 |23 |00 D
r,(HL),(1X+d),(1Y+d) 11 001 011 | CB 01 E
- d - 100 H
00 [000] 110 101 L
m A
RLC (1Y+d) ’ $Ly(X |0 (X|{P|O]|} 11111101 FD |4 6 23
11 001 011 | CB
- d =~ |
00 [000] 110 !
RLs | EV)—f—01 Vlyixjo(x|pP|o]} l Instruction format and
s=r(HLL(IX+d),(1Y+d) 1. states are as shown for
RLC's. To form new
RRCs blelx|o|x|plo|t| @om Op-Code replace [000]
s =r,(HL),(1X+d),(1Y+d) of RLC's with shown
code
RR's plalxfolx|elo|t| @m
s =r,(HL),(1X+d),(1Y+d) .
SLAs 0—17—:—0__14—0 tlyixjoix|pjo|
=r,(HL),(1X4d),(1Y+d)
SRAs tltix|of(x|plo|¢]| [OD
s =0,(HL),(1X+d),(1Y+d)
SRLs 0-f—1] bldx|oix|ploft| @D
s =r,(HL),(1X+d),(1Y+d)
RLD A .(HL $1 44X |0(X|P 0] *|11101101] ED |2 5 18 Rotate digit left and
01 101 111 | 6F right between the
accumulator
— and location (HL).
RRD A [2B-0] [-4B-0MHW 4| 4 (x |0 (X |P|O|®[11101 101 ED |2 |5 |18 |Thecontentof the
01 100 111 | 67 upper half of the
accumulator is
unaffected

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Reprinted courtesy of Zilog

85

BIT SET, RESET AND TEST GROUP

Symbolic Flags 0p-Code No.of (NoofM{Noof T
Mnemanic Operation S H P/V| N | C {76 543 210| Hex |Bytes |Cycles |States | Comments
BITb,r Z-Th X 1 X|[X]| 0| e]|11001011] CB |2 2 8 r | Reg.
0t b r 0oa B
BITb, (HL) [Z - {HU) X 1| X[X | 0] e|11001011] CB |2 3 12 001 C
01 b 110 010 D
BITb, (IX+d)y [Z = (IX+d)p | X 1| X|[X|0fe|11011101 DD |4 5 20 0 E
11 001 011| CB 100 H
- d - 101 L
01 b 110 m A
b Bit Tested
BITh, (IY+dly |Z = (IY+d)y | X T X|X|0]|elt1111101 FDO (4 5 20 000 0
11 001 011 CB 001 1
- d - 010 2
0 b 110 on 3
100 4
101 5
1 110 6
‘ 111 7
SETb, r p - 1 . e | X|e®|e® | e 11001011 CB |2 2 8
b r
SET b, (HL) (HUy =1 ° | X|e|e® | ® (11001011 CB |2 4 15
1 b 110
SET b, (IX+d) [(IX+d)y =1 | @ e | X| el e | ei]11011 101 DO |4 6 23
11 001 011 CB
- d -
] b 110
SET b, (IY+d) [(IY+d)y =1 | ® e X |l e 1T 111101 FOD |4 6 23
11 001 0N CcB
- d -
@] b 110
RESH, s sp - 0 ° e x| e e | o0 To form new Op-
s=r, (HL), Code replace (11]
{1X+d), of SET b, s with
(1Y+d) Flags and time
states for SET
instruction

Matas: Tha notation sy indicatzs bith (Qto 7) or Incaticn s

Flag Motation:

* = flag not affected, 0 = flag reset, 1 = flag:2t, X = flag is unknown,
} = flag is affected according to the rasult of the operation.

86

Reprinted courtesy of Zilog

JUMP GROUP

Symbolic Flags Op-Code No.of | No.of M{Noof T
Mnemonic Operation S|z H [P/VT N | C |76 543 210] Hex | Bytes|Cycles | States | Comments
JP nn PC -~ nn o e | X|® | X|® e |e 117000011 C3 |3 3 10
- n ~
1 - n - cc | Condition
. JPcc, nn If conditioncc | ® | ® | X |® | X |® | @ | e I]] ¢c 010 3 3 10 000 | NZ non zero
B is true PC - nn, - n - 001 {Z zero
otherwise - n - 010 | NC non carry
continue 011 |C carry
100 | PO parity odd
101 | PE parity even
110 | P sign positive
i JRe PC~PC+e e e | X|e® | X|e | e '« 00011000 18 |2 3 12 111 | M sign negative
- e2 -
JRC, e IfC=0, s | o X|e X|e | | 100111 000 38 2 2 7 If condition not met
continue - e2 -
F IfC=1, 2 3 12 If condition is met
PC -~ PC+e
JRNC, e 1fC=1, e e | X|e | X|e | e | e 00110000 30 |2 2 7 If condition not met
continue - g2 -~
IfC=0, 2 3 12 If condition is met
PC - PC+e
JRZ e fZ2=0 e o Xie X |e | e |e (00101 000 28 2 2 7 If condition not met
continue - e2 -
fZ=1, 2 3 12 If condition is met
PC = PC+e
JRNZ e 1f2=1, e e | X|® | X|® | e e |00 100000 20 |2 2 1 If condition not met
continue - e2 -
fz=0, .) 2 3 12 If condition is met
PC = PC+e
JP (HU) PC - HL e e | X e | X |e® [[e |11101 001 E9 |1 1 4
JP(1X) PC - IX e |o | X |e | X|® [e e |11011101f DD | 2 2 8
11 101 001 E9
JP (1Y) PC - 1Y e |e | X|e | X e e (e (11 111101 FD | 2 2 8
11 101 001 E9
DINZ, e B - B-1 e e | X |® | X | e e I00010000 10 |2 2 8 1fB=0
1fB=0, - e2 -
continue
IfB#0, 2 3 13 1fB+#0
PC - PC+e

Notes: e represents the extension in the relative addressing mode.
e is a signed two's complement number in the range <126, 129>
e2in the op-code provides an effective address of pc+e as PCis

incremented by 2 prior to the addition of e.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Reprinted courtesy of Zilog

87

CALL AND RETURN GROUP

Symbolic Flags Op-Code No. of [NoofM|Noof T
Mnemonic | Operation STz H P/V] N | C |76 543 210] Hex | Bytes |Cycles |States | Comments
CALLnn (SP-1) ~PCy| ® | o[X[| X[oo]| e 11001101 CO |3 5 17
(SP-2) ~ PCy - n -
PC -~ nn - n -
CALLcc,nn|lfcondition [e | @ | X | ® | X| | e | e |11 ¢cc 100 3 3 10 Hc'u:isfalse
cc is false - n -
continue, - n - 3 5 17 If cc is true
otherwise
same as
CALLnn
RET [PCL~(SP) | e e X|@®|X|e]|e | e]|1100 001] CI |1 3 10
PCy - (SP+1)
RET cc If condition | ® | e | X | e | X| ® | e | e |11 cc 000 1 1 5 If cc is false
cc is false
continue, 1 3 1 If cc is true
otherwise cc Caondition
same as 000 | N2 non zero
RET 001 | 2 zero
010 { NC noncarry
RETI Returnfrom | ® || X | ® | X| e | e | e 1] 101 101| ED |2 4 14 g1t | C carry
interrupt 01 001 101| 40 100 | PO parity odd
RETN! Returnfrom | ® [e | X | e | X | ® | e | o (11 101 101] ED |2 4 14 101 | PE parity even
non maskable 01 000 101 45 110 | P sign positive
interrupt 1M | M sign negative
RSTp (SP-1) ~PCyl ® | o[X|® X|[eo|o®]|ef11 ¢t 1M 1 3 n
(sP-2) - PC_
PCy - 0
PCL - p
t leo
| 000 | OCH
| 001 | 08H
010 | 10H
| 01 | 18H
100 | 20H
101 | 28H
i 110 | 30H
111 | 38H

TRETN loads IFF, = IFF,

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
} = flag is affected according to the result of the operation.

Reprinted courtesy of Zilog

88

ol

INPUT AND OUTPUT GROUP

Symbolic Flags Op-Code No.of [No.of M |No.of T
Mnemonic O peration S |2 H P/VIN | C [76 543 210] Hex Bytes |Cycles [States Comments
INA, (n) A - (n) ° | e | X| e |e | e 11011011 DB |2 3 n nto Ag ~ Ay
- n - Acc to Ag ~ Aqg
INt, (C) r - (C)]} {|X| PO |® (11101101 ED |2 3 12 CtoAp~ Ay
ifr=1100nly 01 r 000 Bto Ag~ Ayg
the flags will
be affected
)
INI (HL) - (C) I X114 XiX! Xxi1|e 11101101, ED |2 4 16 Cto Ag~ Ay
B-B-1 10 100 010; A2 Bto Ag ~ Ayg
HL = HL+1
INIR (HL) = (C) X 1 X | X| X|1|e 101101 ED |2 5 pa| CtoAg ™~ A;
B~B-1 10110 010] B2 (1fB#0) Bto Ag~ Ag
HL = HL+1 2 4 16
Repeat until (1f B =0)
B=0
O}
IND (HL) - (C) X1t X !X X! 1 |{e (11101101 €D |2 4 16 Cto Ag~ Ay
B~B-1 10 101 010] AA BtoAg ™~ Ag
HL = HL-1
INDR (HL) - (C) X |1 X | X | X| 1t]e (11101101 ED 1|2 5 2 Cto Ag~ Ay
B ~B-1 10 111 010} BA (If B#0) BtoAg~ Ay
HL - HL-1 2 4 16
Repeat until (It B=10)
B=10
0UT (n), A | (n)=A o | e | X | e | e e 11010011 D3 |2 3 1 nto Ag ~ Ay
Acc to Ag ~ Aqg
OUTI{C)r |(C) =~ o | e | X | e | e e |11101 101 ED |2 3 12 Cto Ag~ Ay
01 r 001 Bto Ag ~ Aqg
@
ouTI (C) - (HL) X |4 X X | X| 1t {e {11101 101 ED |2 4 16 Cto Ag ™~ Ay
B -B-1 10 100 011 A3 Bto Ag ™~ Ayg
HL - HL+1
OTIR (C) = (HL) X1 X|X| X|1]e [11101 101 ED |2 5 21 Cto Ag~ Ay
B~B-1 10 110 011| B3 (1f B#0) Bto Ag ™~ Ayg
HL - HL+1 2 4 16
Repeat until KIfB=0)
B=0
@®
ouTD (C) = (HL) X |1 X |X| X|1|e |11101 101 ED |2 4 16 Cto Ag~ Ay
B-B-1 10 101 011| AB Bto Ag~ Ayg
HL - HL-1
OTDR (C) = (HL) X |1 X|X| X|1 e 11101101 ED |2 5 2 CtoAg~ Ay
B-B-1 10 111 011| BB Nif B#0) BtoAg ™~ Ayg
HL - HL-1 ° 2 4 16
Repeat until 1fB=0)
B=0

Notes:

Flag Notation:

89

(D M the result of B - 1s zero the Z flag is set, otherwise it is reset.

® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Reprinted courtesy of Zilog

THIS PAGE INTENTIONALLY LEFT BLANK

90

APPENDIX 2

SAMPLE PROGRAMS

91

SAMPLE PROGRAMS
Lo T]

In this appendix a number of example programs are given
which, it is hoped, will help the novice understand and write
assembly-level programs.

The appendix is split into two parts:
a) Programs which can be viewed using the 'Front Panel' and

b) Programs which can be entered, run, and then viewed/used
via the screen and keyboard.

Note that only a few examples are given, and that they attempt to
be self-documenting. It should always be the case that programs
are as self-documenting as possible, and assembly level programs
are far from an exception!!

A.2.1 'FRONT PANEL’' PROGRAMS
oo oo]

Five very short programs are given below, more or less just
to give a flavour of the size of the programming 'steps' that
can be taken at machine level. Also they show a little about
program layout. All of the programs can be entered using the
'front panel' of the 380Z and then 'single-stepped' through to
see things happening.

s PROG1

;Program that takes two small numbers from two
1locations and adds them, leaving the result in
;the accumulator.

0100 ORG 0100H

’

0100 3A0801 START: LD A, (NUM1) ;Load acc. with cont. of 'NUM1'.

0103 47 LD B,A ;Store value in 'B' register.,
0104 3A0901 LD A, (NUM2) ;Load acc. with cont. of 'NUM2'.
0107 80 ADD A,B ;Add the two values.
7
0108 02 NUM1: +2 ;Data.
0109 04 NUM2: +4
i
i
0000 END
0108 NUM1 0109 NUM2 0100 START

No errors

92

;This program sets all the general purpose
;registers to zero by using a series of
; 'stack' instructions.

’

0100 ORG 0100H

H

;Values:

; =======
0000 = ZFERO EQU 00
0100 210000 START: LD HL,ZERO ;Set HL=0000.
0103 E5 PUSH HL ;Place value on stack..
0104 ES5 PUSH HL
0105 E5 PUSH. HL
0106 F1 POP AF ;Take values off
0107 C1 POP BC istack, setting
0108 D1 POP DE ;registers=0000.
0000 END

0100 START 0000 ZERO

No errors
;s PROG3:
;Program to successively enter a value
;into consecutive locations.
H
0100 ORG 0100H
;Values:
0110 = START EQU 0110H
0006 = NUM EQU 6
00F8 = VALUE EQU OFS8H
i
0100 3EFS8 GO: LD A,VALUE ;Value to enter.
0102 211001 LD HL, START ;Where to put first.
0105 0606 LD B,NUM ;How many..
0107 77 RP1: LD (HL),A ;Store value &
0108 23 INC HL ;repeat until
0109 10FC DJNZ RP1 ;finished.
;Note that '"INC HL' is needed to increment
:the store address for the value.
H
H
0000 END
0100 GO 0006 NUM 0107 RP1 0110 START 00F8 VALUE

No errors

93

0100

0000 =
0005 =

0100 3EO05
0102 3D

0103 FEOO
0105 20FB
0107 3EO05

0000

0005 INIT

No errors

;To show a little bit about 'jumps' this
;program takes a value in the accumulator

;and decrements it, compares the new value

;to zero and repeats the operation if no
imatch occurs. When the contents of the
saccumulator are zero the program moves
;jon, replacing the original value in
;the accumulator.

.
1’

ORG 0100H

7
;Values:

ZERO EQU 0

INIT EQU 5
START: LD A, INIT ;Get value.
ST1: DEC A ;Decrement and
CP ZERO jcompare..
JR NZ,ST1 ;s Repeat or
LD A, INIT ;jreplace & cont..
7
H
END
0102 ST1 0100 START 0000 ZERO

94

0100

0004
0005

0100
0102

0104
0107

0109
010A

0000

0005

3E04
0605
CD0901
10FB

3C
c9

INCR

No errors

;To illustrate the CALL/RET operation
;the following program takes an initial
;value into the accumulator and an

; 'increase' value into the B register.
;s The accumulator will then be increased
;by the value in 'B' via a subroutine
;which increments the accumulator 'B!

;times.
ORG 0100H
;Values:
INIT EQU 4
INCR EQU 5
H
START: ID A, INIT ;Get initial value.
LD B, INCR ;Set up loop..
RP1 CALL UPIT ;Call increment routine.
DJNZ RP1 ;Repeat..

;END OF PROGS5.

»

~s we

UPIT-Subroutine to increment accumulator.

O~

PIT: INC A
RET ;Return.

Note that at the end of the program
the contents of the accumulator will
be INIT+INCR=9,

D O TR T T TR

=
Z
o

0004 INIT 0104 RP1 0100 START 0109

95

UPIT

A.2.2 PROGRAMS VIEWED FROM THE SCREEN

Three programs are given here which start to demonstrate the use
of the RML 'EMT' instructions for input and output, e.g. of ASCII
characters.

;This is a very short program which
iwhen run will echo everything typed
;on the keyboard onto the screen.

.
I’

0100 ORG 0100H
; EMT values

; (RML input/output routines)

0022 = KBDWF EQU 22H
0001 = OUTC EQU 01H
i
0100 F722 START: EMT KBDWF ;Get character from
;keyboard..
0104 C30001 JP START ;jrepeat.
i
;Note that this program will continue
jrunning until e.g. the RESET button
;is pressed.
0000 END

0022 KBDWF 0100 START 0001 oOUTC

No errors

96

0100

0022 =
0001 =

0020 =

0000 F722
0002 CD0900
0005 F701
0007 18F7

0009 C620

000B C9

0000

0020 CNVRT

No errors

;This program is similar to PROG6 except
;that a subroutine is called which converts
;the character entered into lower case,
;before it is echoed back.

ORG 0100H

;EMT values

KBDWF EQU 22H
OUTC EQU O01H

CNVRT EQU 20H

START: EMT KBDWF ;Get character.
CALL CON1 ;Convert it.
EMT OUTC ;Echo itee&es
JR START ;repeat.

;CON1=-Subroutine to convert upper case
;to lower case by adding 20H.

I’
CON1: ADD A, CNVRT +Add on 20H.
RET i Return.

END

0009 CON1 0022 KBDWF 0000 START 0001

97

ouTC

0100

0001

0020 =
007A

000D

0000 3E20
0002 F701
0004 FE7A
0006 CAOCOO

0009 3C
000A 18F6

ooocC
000E
0010

3EOD
F701
C30000

0000

000D CRET
0000 START

No errors

;PROGS8:

;This is just a simple program which will
;continually output the ASCII character
;set from <space> to <z>.

ORG O0100H
;EMT values

Values:

; ======
DATUM EQU *' '
LIMIT EQU 'Z'
CRET EQU ODH ;<CR/LF>

i

START: 1D A,DATUM ;Start value.

ST1: EMT OUTC ;jOutput it.
CP LIMIT ;Finished?
JP Z,ST2 ; Yes—=>
INC A ;No-increment &
JR ST1 ;repeat.

ST2: LD A,CRET ;Output a newline.
EMT OUTC
JP START ;Start again!!

i

i

END

0020 DATUM 007A LIMIT 0002 ST1
0001 OUTC

oooooDEEEDDEEEDEEEEE

98

000C ST2

BIBLIOGRAPHY

99

BIBLIOGRAPHY
C o

1.

MOSTEK, Z80 Programming Manual, Mostek Corporation, 1977,

C.D. Kraft and W.N. Toy, Mini/Microcomputer Hardware Design,
(Chapter 6, App C), Prentice Hall, 1979.

D. Johnson, J. Hilburn, and P.Julich, Digital Circuits and
Microcomputers, Prentice Hall, 1979.

L. Nashelsky, Intro.to Digital Computer Technology, Wiley, 1977.
R. Zaks, Microprocessors - from chips to systems, Sybex, 1977

A. Osborne, An Intro. to Microcomputers - Vol.l Basic Concepts,
Sybex, 1977.

E. Nichols, J. Nichols and P. Rony, Z-80 Microprocessor =
Programming and Interfacing Vol. 1,2, Sams, 1979,

W. Barden Jr., The Z80 microcomputer handbook, Sams, 1978.

A, Lippiatt, The Architecture of Small Computer Systems,
Prentice Hall, 1979.

100

