' "““ﬂ:@%
#

PDP-11 MACRO-11

~ Order No. AA-50754

August 1977

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754,

digital equipment corporation - maynard. massachusetts

T N I T T AT

First Printing, August 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL. ‘

Copyright (:) 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document reguests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSETS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~8
DDT LAB-8 TYPESET-10

DECCOMM DECSYSTEM~20 TYPESET-11

11/78-1%

e

CONTENTS

PREFACE
0.1 MANUAL OBJECTIVES AND REASER}ASS?MP?IONS
0.2 STRUCTURE OF THE DOCQMENT =
0.3 ASSOCIATED DOCUMENTS
0.4 DOCUMENT CONVENTIONS
L PART I INTRODUCTION TO MACRO-11
CHAPTER 1 MACRO~-11 FEATURES
1.1 OVERVIEW OF MACRO-11
1.1.1 Assembly Pass 1
1.1.2 hssembly Pass 2
CHAPTER 2 SOURCE PROGRAM FORMAT
£ 2.1 PROGRAMMING STANDARDS AND CG&VERTIOKS'
¢ 2.2 STATEMENT FORMAT
2.2.1 Label Field
2.2.2 Operator Field
2.2.3 Operand Field
2.2.4 Comment Field
2.3 FORMAT CONTROL
PART IT PROGRAMMING IN MACRO-1l ASSEMBLY LANGUAGE
CHAPTER 3 SYMBOLS "AND EXPRESSIONS
P .
g 3 3.1 CHARACTER SET
’ 3.1.1 Separating and Delimiting Characters
3.1.2 Illegal Characters
3.1.3 Unary and Binary Operators
3.2 MACRO~-11 SYMBOLS
3.2.1 Permanent Symbols
3.2.2 User-Defined and Macro Symbols
2 3.3 DIRECT ASSIGNMENT STATEMENTS
3.4 REGISTER SYMBOLS
3.5 LOCAL SYMBOLS
3.6 CURRENT LOCATION COUNTER
® 3.7 NUMBERS
3.8 TERMS
3.9 EXPRESSIONS
CHAPTER 4 RELOCATION AND LINKING
CHAPTER 5 ADDRESSING MODES
f§ i 5.1 REGISTER MODE
K 5.2 REGISTER 'DEFERRED MODE
5.3 AUTOINCREMENT MODE

iii

P el = B SO
ot t

ha

i

BB B2 B B DD R
LI T I O T B)
O L1 b i Nt et et (SO el o Land

LI T N T T T U T |
A0 S U U WD [

i
|
[

§

a3 03 L L0 G G b L Lt b W]
ot
(V8]

i
|t
-4

s B LR

TR g

CONTENTS (Cont.)

Page
5.4 AUTOINCREMENT DEFERRED MODE 5-3
5.5 AUTODECREMENT MODE 5-3
5.6 AUTODECREMENT DEFERRED MODE 5-3
5.7 INDEX MODE 5-4
5.8 INDEX DEFERRED MODE 5-4
5.9 IMMEDIATE MODE 5-4
5.10 ABSOLUTE MODE 5-5
5.11 RELATIVE MODE 5=5
5.12 RELATIVE DEFERRED MODE 5-6
5.13 SUMMARY OF ADDRESSING FORMS , 5-7
5.14 BRANCH INSTRUCTION ADDRESSING 5~-8
5.15 USING TRAP INSTRUCTIONS 5-8

PART III MACRO-11 DIRECTIVES

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES 6~1
6.1 LISTING CONTROL DIRECTIVES 6-1
6.1.1 .LIST and .NLIST Directives 6-1
6.1.2 Page Headings 6-8
6.1.3 LTITLE Directive 6-11
6.1.4 .SBTTL Directive 6-11
6.1.5 LIDENT Directive 6-12
6.1.6 .PAGE Directive/Page Ejection 6-13
6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL 6-13
6.3 DATA STORAGE DIRECTIVES 6-17
6.3.1 .BYTE Directive 6-17
6.3.2 .WORD Directive 6-18
6.3.3 ASCII Conversion Characters 6-19
6.3.4 .ASCII Directive 6-20
6.3.5 LASCIZ Directive 6-21
6.3.6 .RADS0 Directive 6-22
6.3.7 Temporary Radix~50 Control Operator: “R 6-23
6.4 RADIX AND NUMERIC CONTROL FACILITIES 6-24
6.4.1 Radix Control and Unary Control Operators 6-24
6.4.1.1 .RADIX Directive 6-24
6.4.1.2 Temporary Radix Control Operators: "D, "0,

and "B 6-25
6.4.2 Numeric Directives and Unary Control Operators 6-26
6.4.2.1 LFLT2 and .FLT4 - Floating-Point Storage

Directives ; 6-~-27
6.4.2.2 Temporary Numeric Control Operators: "C and "F 6-27
6.5 LOCATION COUNTER CONTROL DIRECTIVES 6-29
6.5.2 .0ODD Directive 6-29
6.5.3 .BLKB and .BLKW Directives 6~-30
6.6 TERMINATING DIRECTIVES 6-31
6.6.1 .END Directive 6-31
6.6.2 .EOT Directive 6-31
6.7 PROGRAM BOUNDARIES DIRECTIVE: LIMIT 6~31
6.8 PROGRAM SECTIONING DIRECTIVES 6-32
6.8.1 .PSECT Directive 6~-32
6.8.1.1 Creating Program Sections 6-36
6.8.1.2 Code or Data Sharing ;- 6~38
6.8.1.3 Memory Allocation Considerations 6-38
6.8.2 .ASECT and ,CSECT Directives : 6~38
6.9 SYMBOL CONTRCL DIRECTIVE: .GLOBL 6-39
6.10 CONDITIONAL ASSEMBLY DIRECTIVES - 6-41

iv

L]

&

ety

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

6.10.1
6.10.2
6.10.3
6,10.4
7

.

« = @
& W

. @& » *« & s =
1O b W N

e % & a2 & a4 & 2 s 8 3 s 0 e @

AV EBRD BWWWWWWWWN R R

e o o
W

a2 s 3

~ N NN A N R RS RS SN S S I S B S

CONTENTS (Cont.)

Conditional Assembly Block Direectives: .IF,

ENDC

Subconditional Assembly: Blmsk niractzves. i
.IFF, JIFT, .IFTF

Immediate Conditional Assemhly nlzectlve-
LITIF

PAL~11R Condltaonal Assamb&y Dxrectlves

MACRO DIRECTXVES

DEFINING MACROS
.MACRO Directive
.ENDM Directive
.MEXIT Directive
MACRO Definition Formattmng
CALLING MACROS 3
ARGUMENTS IN MACRO DEFINITEQKS éNB MACRQ CALLS
Macro Nesting
Special Characters in: Macfa Arguments
Passing Numerig Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols kutamatmcally
Keyword Arguments
‘Concatenation of Macro axgumsnts CE L
MACRO ATTRIBUTE BIRECTIVE&*'-«&AEQ; .NCHR, AND
NARG Directive
.NCHR Directive
.NTYPE Directive
+ERROR AND ,PRINT BIRECTIVES :
INDEFINITE REPEAT BLOCK: DIRECTI?E&. .IRP AND
«IRPC '
.IRP Directlve
LIRPC Directive B ni
REPEAT BLOCK DIRECTIVE: .REPT, .ENDR
MACRO LIBRARY DIRECTIVE: . .MCALL-

MACRO-11 CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS

SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACRO~11 DIRECTIVES

DIAGNOSTIC ERROR MESSAGE SUMMARY
MACRO-11 ERROR COCDES

Page

6-41
6-43

6-46
6-46

~3
i
)

N
HONNoonswwwn -

%\!NN\JMQ?*—J‘«JMQQQ

~3
!

b

et

7-11
7=-12
7-13
7-14

7-15
7-15

A-4

B-1
B-1
B-1
B~2

c-1

C=1

c~4
D-1
D-1

APPENDIX

* &
W b

L R R T T T S

e o b s L B B T L0 U U1 s R B et e

. 2 * &
Ut s Lo R

. s = - .- & w . . . « = . - * - *

Pt OO ORI UTUTUT U DT U UT U @ e B o o i D B B D B i LD N

OO O

2 ® s & B & 9 & @

. e w
L by

[

4 & 3 B B2 8 & 5 & T @ & B s & 8 & * &

N

. »

APPENDIX

e s s
(TSI S I

APPENDIX

<= I > B B B s T I o M el s o s el s e M s M e i e Bo Ro BoloNo N NoNoNoRo Bo N No Rolole No R Bol ol R B B B
[\ o

APPENDIX

CONTENTS {Cont.)

SAMPLE CODING STANDARD

INTRODUCTION
LINE FORMAT
COMMENTS
NAMING STANDARDS
Register Standards
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Other Symbols L
Using the Standard Symbollcs
Symbols
Global Symbols
Symbol Examples
Program=-Local Symbols
Macro Names
PROGRAM MODULES
‘General Comments on Programs
The Module Preface’
Formatting the Module Preface
Modularity
Calling Conventions (Inter—Module)
Exiting
Intra~Module Calling Conventions
Success/Failure Indication.
Module Checking Routines
FORMATTING STANDARDS '
Program Flow
Common Exits
Code with Interrupts Inhibited
PROGRAM SOURCE FILES
FORBIDDEN INSTRUCTION USAGE
RECOMMENDED CODING PRACTICE
Conditional Branches
PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier

Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

- GENERAL HINTS AND SPACE-SAVING GUIDELINES

MACRO DEFINITIONS AND EXPANSIONS
OPERATIONAL TECHNIQUES

WRITING POSITION INDEPENDENT CODE

INTRODUCTION TO POSITION INDEPENDENT CODE

EXAMPLES

SAMPLE ASSEMBLY AND CROSS REFERENCE/LISTING

vi

Page

e
i
ot

LI U B U N I N I Y I I I

LU T T T T I T T T I I
HFHROWYWOLWVWWOVOUOENIUTVNUTUI S D WWWWWNDRNDN NN R

mmmmmmmmmmmmmm?mmmmmmmmmmmmmmm

E-12

H-1

£

e

o~ CONTENTS (Cont.)

Page
. FIGURES
FIGURE 3-1 Assembly Listing Showing Local Symbol Block 3-11
3-2 Sample Assembly Results 3-12
% 6-1 Example of Line Printer Assenmbly Listing 6-6
6-2 Example of Terminal Assembly Listing 6-7
6-3 Listing Produced With Listing Control
Directives : 6-9
6-4 Assembly Listing Table cof Contents 6-12
6-5 Example of .ENABL and .DSABL Directives 6-16
6-6 Example of .BLKB and .BLKW Directives 6-30
VY 7-1 Example of .IRP and .IRPC Directives 7-17
TABLES
TABLE 3-1 Special Characters Used in MACRO-11 3-1
3-2 Legal Separating Characters 3-3
3-3 Legal Argument Delimiters 3-3
3-4 Legal Unary Operators 3-4
e 3-5 Legal Binary Operators 3-5
£ 6-1 Symbolic Arguments of Listing Control
R Directives 6-3
6-2 Symbolic Arguments of Function Control
Directives : 6-~14
6-3 Symbolic Arguments of .PSECT Directive 6-33
6-4 Non-IAS/RSX-11 Program Section PDefault Values 6-39
6~-5 Legal Condition Tests for Conditional Assembly
Directives 6-41
6~6 Subconditional Assembly Block Directives 6-44
i

74 Mg%

vii

e "%!%
P

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The intent of this manual is to enable use:s to develap pxagrams caded
in the MACRO-11 assembly language. No prxor knawleége cf ‘the ﬁAGRﬁ~11
Relocatable Assembler is assumed.,)

Although the description of the assembly _language is wholly

self-contained within this manual, the readgk : assumed to be
familiar with the PDP-1l oprocessors - and relateﬁ terminology, as
presented in the PDP-11 Processor Handbooks, No attempt is made in
this document to describe the PDP-11 hardware or the functions of the
various PDP-11 instructions.

Since the development of programs necessarily. 1nvclvas 11nk1ng to
create an executable image, the reader 1is encouraged to become
familiar with this process, as presented in the applicable system
manual (see Section O. 3). , e LT

In presenting MACRO~11l, a tutorial bias has been aﬂopted to enlarge
upon the reference material. This posture reflected in the
examples and the accompanying commentary d&scribxng 'MACRO~11 ‘language
elements in typical -applications. Portions of te that are shaded
indicate that a particular MACRO-11l feature is not ava1lable in-the 8K
version of MACRO-11. . , E

0.2 STRUCTURE OF THE DOCUMENT

This manual contains three parts. Part I, consisting of two chapters,
briefly introduces MACRO-11. Chapter 1 lists the key features of
MACRO~11l, and Chapter 2 identifies the advantages of following
programming standards and conventions. Also described is the format
used in coding MACRO-11 source programs.

Part II, consisting of three chapters, presents general information
essential to programmzng with the MACRO-11 assembly language. Chapter
3 describes the symbols, terms, and expressions that form the elements
of MACRO-11 instructions. The character set is listed, and the types
of programming symbols that may be defined by the user are discussed.
Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and lxnklng of object modules.
Chapter 5 briefly describes how data stored in memory can be accessed
and manipulated uslng the addressing modes recognized by the PDP-11
hardware.

ix

Part III, consisting of two chapters, describes the MACRO-11
directives that control the processing of source statements during
assembly. Chapter 6 discusses directives which accomplish generalized
MACRO~11 functions, while Chapter 7 deals with directives used in the
definition and expansion of macros.

Finally, several appendixes are provided, supplying additional
information of interest to the MACRO-1ll programmer.

‘Appendix A lists the ASCII and Radix-50 character sets that may be
used in MACRO-11 programs. Appendix B lists the special characters
recognized by MACRO-1l, summarizes the syntax of the various
addressing modes used in PDP-1ll processors, and briefly describes the
MACRO~11 directives in alphabetical order. The permanent symbols that
have been defined for use with MACRO-1l are listed alphabetlcally in
Appendix C. . »

The diagnostic error codes produced by MACRO-11 to identify various
“types | of errors detected during the assembly process are listed
alphabetically in‘Appendlx D. Appendix E contains a sample coding
standard that is recommended practice in preparlng MACRO-11 programs.
Appendix F dlscusses several methods of conserving dynamic memory
space for wusers of small systems who may experience difficulty in
assembllng MACRO-11 programs. : . B ‘ '

”Appendlx G is a discussion of position independent code (PIC).

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the applicable documentation directory
listed below for descriptions of documents associated with this
manual.

 IAS Documentation Directory

 RSX-11D Detumeutation Directory

RSX-11M/RSEX~-11S Documentation Directory

RT-11 Documentation Directory

0.4 DOCUMENT CONVENTIONS

,Thejsymboléédefined below are used throughout thiswménuai.

Symbol Definition
no Brackets indicate that the enclosed argument is
yoptlonal ' i C
!t e Vertical bars indicate that a singleffchoiqe muSt be
o ' madé from a list of arguments. SERART e S '

e ‘“Elllps1s indicates optional ccntznuatlcn of an ‘argument
P list in the form of the last specifled afgument.

i

T

UPPER~CASE
CHARACTERS

lower—case
characters

{n)

Gpper“case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n} is used following a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal value, while 100(10)
indicates a decimal value. '

xi

o

3

PART I

INTRODUCTION TO MACRO-11

[&

. CHAPTER 1
MACRO-11 FEATURES

The MACRO—ll Asgembler prov1&es the fcllaw;ng featurea:

1. _SGurce and command strlng cantzal of asaambly iunctlens

2. Dev1ce and f£ilename spaczfxcat;ans far ingut and output ﬁiles

3. Error llsting on command outgut ev;ce

4. Alphabetlzed, formatted symbal tablé lxstlng. : 6ptiq§a1
cross~reference listing of symbblﬁ ; s

5. Relocatable object modules

6. Global symbols for linking objecﬁ modules
7. Conditional assembly directives :
8. Prog:am seetian;ng dlzectxvea

9. ﬂser*deflned macros and Mmacro. 11brax1gs
10. Ccmprehen51ve system macro llb:acy

11. Extens;vg, source and command strzng ﬁon'salf'aff,liéfiﬁg
functions. - ; cE -

1.1 OVERVIEW OF MACRO-11l

MACRO=-11 is a 2-pass assembler. The functians an& @pezatlans relevant
to each assembly pass are described in the following sections. :

'1.1.1 Assembly Pass 1

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly
of each source statement.

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACRO-11 wuses internally for the assembly process.
These areas include all dynamic storage areas and buffer areas used as
file storage regions.

After initializing memory areas, MACRO-1l issues a call to a system
subroutine which transfers a command line into memory. This command

MACRO~11 FEATURES

line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO-11
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then closed to minimize requirements for
active file space.

As the assembly process begins, MACRO-1l initiates a routine which
retrieves source 1lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO-11
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO-11
determines the length of each instruction and assembles it accordingly
as one word, two words, or three words.

At the end of assembly pass 1, MACRO-1l1 reopens the output files
described above and writes out information that is to be used later in
linking the object modules. Such information as the object module
name, the program version number, and the global symbol directory
(GSD) entries for each program section are output to the object file.
After writing out the GSD entries for a given program section,
MACRO-=11 scans through the symbol tables to find all the global
symbols that are bound to that particular program section. MACRO-11
then writes out GSD records to the object file for these symbols.
This process continues for each program section, bringing to a close
assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO-1l simultaneously writes the
object records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated. B

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-ll-detected errors are flagged with an error code as the
assembly listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records containing information necessary for
subsequent linking of the object file.

The information thus passed enables the global symbols in the object
modules to be associated with absolute or virtual memory addresses,
thereby forming an executable body of code,.

The user may wish to become familiar with the macro object file format

and description. This information is presented in the applicable
system manual (see Section 0.3 in the Preface). '

1-2

T,

g,

£
L B

CH&PTER 2
SOURCE PROGRAM FQRHAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals dlrectly thh the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. ‘Standards provide a number of
advantages. Wheén applied to the p:agram & éeveiag&ent process,
standards make the programming effort easier to: '

Plan

Comprehend

Test

Modify

Convert
Even - though standards must - accommodate ' 1ocal :ements;
aspects’ of the program develcpménﬁ 38
applicability. The standards common “to all o ITAL ,
software products are presenteé in Appendix E as a ““ai fe: asers.
Observance of these standards is beneficial to ﬂIGIT&L and its users,
by simplifying both communications and the continuing task of software
maintenance and enhancement.

many

2.2 STATEMENT FORMAT

‘A source program is composed of a sequence of source coding lines.

Each 1ine contains a single assembly-language statement. MACRO-11
will accept a source line of 132 characters, but 80 characters is the
recommended length, because of eonstraxnts 1mgasad by ziatxng ‘format
and terminal line szze.

A MACRQ~11 statement may consist of as many as féﬁf 'fiélds.‘ These
fields are identified by their order of appearance within the
statement and/or by specified separating ‘characters between fields.
The general format of a MACRO~11 statement xs-

Label.' Operator Operand :Camment(s}»

The label and camment flelds ‘are optional. The operator and aperand
fields are interdependent, i.e., when both fields are present in a
source staﬁenent, each fleld is evaluated by HACRﬂﬁll in ‘the context
of the other. ,

A statement may contain an operator field and no operand field, but
the reverse 1is not true. A statement containing an operand with no
operator does not conform to established MACRO-11l coding conventions;
such a statement is currently interpreted by MACRO-11 during assembly
as an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO-11 interprets and processes source program statements one by
one, generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly~language statement must be completed on one source line;
no continuation lines are allowed in MACRO~-11.

The tab character can be used in the source statement to format the
fields into aligned c¢olumns in -ag¢gordance with DIGITAL's standard
source program format, as shown below:

Label = begins in column 1

Operator - begins in column 9
Operand{s) - begin(s) in cciumn 17‘J“
 CQmment(s) - begin(s) in column 33.

}Eor exampleg.the“failowing statement should be formatted in thémsauzée
program into specific columns, increasing its readability in the
assembly listing: , : e T o

REGTST:BIT#MASK,VALUE; COMPARES BITS IN OPERANDS.
1 9 17 33 (colunns)
REGTS8T: BIT #MASK,VALUE ;COMPARES BITS IN OPERANDS.

The above formatting conventions are not mandatory in coding MACRO-11
programs (free-field coding is. permzsslble) - However, it .is
,teccmmend&d that soyrce programs be prepared. in- acccrdance w1th these
\conventlons for conslstency and clarity. S ;

2.2.1 Label Field

A label is a means of symbolically referring to a location in a
progranm. R P e

A label is:.a user-defined symbol which is assigned the value of -the
current location counter and entered into the user-defined symbol
table. The current location counter is the means by -which -MACRO-1l1
assigns memory addresses to the source program statements as . they are
encountered during the assembly process. The address: value of the
label 1is absolute or relocatable, depending on whether the current
program section being assembled is absolute. or relocatable. - (The
.concept of program sections and the attributes that may be spec1f1ed
for them are discussed in detail in. SQCthH 6.8.) . ,

In the case of an absolute program section, the value of the current
location counter is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
the . walue of the current location counter in a relocatables-program
fsectian is also relocatable; “however, a relocation bias calculated at
-link time will be added to the apparent value of the current location
counter to establish its effective absolute wvirtual address at
execution time.

(e

References to this label in other modules will be.

SOURCE PROGRAM FORMAT

1f present, a label always appears as the first field in a source
statement and must be terminated by a colan. For. exsmﬁle; if the
current 100&&1&3 counter valne is absolute i&ﬁé&;,ytb& g&atement+

ABCD: MOV A,B

assigns the value 100 (8} to the label ABCD. Subsequent references to
this label would then yield a value of ab ute«laﬁisi, In. this
example, if the location counter value were e, the final
value of ABCD. would be 100(8}+4K, where Kﬁte;‘es” s the relocation
bias of the pragfam sectxen, as calcuiaté& Hy the T .;yxi&e: at link
tlm-« :

More than one la&ei may ap§aar ﬁlthlﬂ a szngie 1& l;ffialé$, Each
label so specified is assigned the same address value. For example,
if the current location counter value is 100(8), the multiple labels
in the following statement:

ABC: $DD: A7.7: MOV A,B
are each assignet uhe value 100(8).

Multiple labels may also appea: on successive lines. ’?étuexaméie; the
statements ; , E

ABC:
$DD: B
A7.7: MOV A,B

likewise cause the same current location caunte: value ﬁa be ass;gne&
to all three labels. s .

Of the two methcds of assigning multxgla labels s
second is preferred, because consistency of field p
the source program improves readability.

A double colon (::) &ef;nes the label as a. giabal gaymbczi',"
label can be referenced by inﬁepen&entl € ‘

modules are linked as a composite executable imag&,' Fax examgla, the
statement ,

ABCD:: MOV A,B

establishes the label ABCD as a global symbgi‘ The ‘distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
{(see Section 6,9}).

The legal characters for defining labels are:

A through 2

0 through 9

« (Period)

$ (Dollar Sign}

NOTE

By convention, the dollar sign ($) and period (.)
are reserved for wuse in defining DIGITAL system
software symbols. Therefore these characters
should not be used in defining labels in MACRO-11
source prag:ams. :

SOURCE PROGRAM FORMAT

A label may be any ‘length; however, only the flrst six characters are
significant and, therefore, must be unique among all’ the labels in the
source program. All labels are terminatd by a colon (:), which is not
considered part of the label. It is a mandatory dellmlter.“ An error
code (M) is generated in the assembly listing if the first six
characters in two or more 1abels are the same (see Appendlx D).,

A symbcl used as a’ label must not ‘be redefined within the source
program. If the symbol is redefined, a 1label with ‘a’ multiple
‘definition results, causing MACRO-11" to generate an error- code (M)~

the assembly listing (see Appendix D). Furthermore, any statement r
the source program which references a multi~defined label results”
an_ additional diagnostic message; in this case, an error code (D) is
‘generated in the assembly listing (see Appendxx n) R Pt

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operator field entries.

When the operator is an instruction mnemonic, the mnemonic op code
specifies the machine instruction to be generated. MACRO-11 then
continues with the evaluation of the address{es) of the operand(s)
which follow(s). When the operator is a directive, the directive
causes MACRO-11 to perform certain control actions or processing
operatlons during the assembly of the source program. When the
operator is a macro call, MACRO-11 1nserts the code generated by the
macro expansion.

The operator field need not be preceded by a label; but it may be
preceded by one or more labels and followed by one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in
‘the operator field have no significance; such characters serve only
to separate the operator field from the preceding and following
fields. R

An operator is terminated by a space, tab, or any non-RADS50 ¢haracter,
as in the following examples:

MOV A,B - sTHE SPACE TERMINATES THE OPERATOR
R o JMOV.
MOV A,B FTHE TAB TERMINATES THE OPERATOR MOV

MOV@A,B ;THE @ CHARACTER TERMINATES THE
;OPERATOR MOV. i

Although the statements above are all equivalent ~in function, the
second statement is the recommended form because it conforms to
MACRO~11 coding conventions. S

2.2.3 Operaad Field

When the operator fleld contalns an instruction “mhemionié” (op code),
the operand field specifies those program variables that are to be

2~-4

S

.
s
£ .

_Operands may be expressions or symbolic arc

'On the other hand, when. the operator .

‘arguments, as shown in the follow;ng st

SOURCE PROGRAM FORMAT

evaluated/manlgulated by the operator. The operand field may also be
used to supply arguments to MACRO-11 directives and macro calls, as
descrabed in Chapters 6 and 7, respectzvely.

uments (w'thin ‘the context
of the specified operation). Multiple expressions used in the ageraﬂd
field of a MACRO-11 statement must be separaté& by a ¢ ;i
symbolic a:guments similarly used may : v :
separator, i.e., a comma, tab, and/or space. ‘An op‘ and shou}d be
preceded by an operator field; if it is pot, the st ;ameat is treated
by MACRO~-11l as an implicit .WORD directive (see Sect;on 6.3.2).

When the. operatcr field. ccntalns an op ceéf} :

always expressions, as shown in the follow iﬁg st,ﬁemﬁ,

MOV RO,A+2(R1)

directive or a macro call, asaoc;ateé opera

_+MACRO ALPHA ARGl ,ARGZ

Refer to the descrxpticn of each &ACRO~11 ﬁlre«i‘"

ective to determine the
type and number of eperands required in assnang 7”:§g§£iyg.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the follewlng statement:

LABEL: MOV A,B ;s COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the 1line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage=~return, 11ne~feed,
vertical-tab or form-feed. All other characters aypearing in the
comment field, even special characters reserved for use in MACRO-11,

are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

All comment fields must begin with the semicolon character(;). When
lengthy comments extend beyond the end of the source line {(column 80),
the comment may be resumed in a follow;ng line. Such a line must
contain a leading semicolon, and it is suggested that the body of the
comment be continued in the same columnar position in which the
comment began. A comment line can also be included as an entirely
separate line within the code body.

Comments do not affect -assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by ‘the space
and tab characters. These characters have no effect on the assembly
ptocass uniess they are embedded within a 3ymbol, numbe:, or ASCII
text $tfiﬁgz ot unless they are used as the ¢ erator field term1nato:.
Thus, the space and tab characters can be used to pravide an orderly
and reaﬂable seurce program, as reflegted by the follow1ng statements.

;LQB,EL.Mﬁ?;%,TAG,?&E VALUE OFF STACK.

No spaces or tabs have been used to separate the fields in this
statement. Note the difflnalty in reCOgnzzang whete one field ends
and the next begins.

LABEL: MOV {(SP}+,TAG ;POP VALUE GFF STACK.

This “états&ent ‘conforms to the standard horizontal | férﬁattiﬁg
‘conventions, 1i.e., the statement elements are separatea into four
distinct fields and are therefore easily discernible. =

Page fozmattlng and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO-11l directives that may be specified
“to aﬁcampixsh desired formatting operationsx Appendix E describes the
coding conventions used in all DIGITAL PDP-11 operating system
software.

2-6

2

f A

£

PART 11

PROGRAMMING
IN MACRO-11 ASSEMBLY
LANGUAGE

£
b

L W

it

R

T

&

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO~1l instructions. The
character set, the conventions observed in. consttucting symbols, and
the use of numbers, operators, terms and expressxons ‘are discussed as
they relate to MACRO-1l programming.

3.1 CBARACTER SET
The following characters are legal in MACR&*llyééurce programs:

1. The letters A through Z. Both upyet*rand lower-case letters
are acceptable, although, upon input, lower~case letters are
converted to uppat~case (see Section 6.2, .ENABL LC).

2. The dlg;ts 0 through 9.

' 3.:fThe characters . (period) and $ (éﬁllar sign). These
characters are regserved for use as bzgital Equipment
Catporatzon gsystem program symbols.

4, The spec1a1 characters listed in Table 3*1.

Table 3-1
 Special Characters Used in MACRO-11

Character Designation : ' Function
: Colon Label terminator.
X Doubletcalon Labél‘teiminath: -defines the
label as a global label.
= Egqual sign Direct assignment operator;
and macro keyword indicator.
== Double equal Direct assignment operator;
sign defines the symbol as a global
symbol.
3 ‘ Percent sign Register term indicator.
Tab ” ' Item or field terminator.
Space = o Itém 0:~fiel§‘§e;minator.

(Continued on next page)

3-1

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACRO-11

3.1. 1 Sepaxatxng and Delimxtxng Characters

Legal separatlng characters and legal argument dellmlters are defined

below in Tabies 3 2 and 3-3 respectlvely.

Character Designation Function
Number sign Immediate expression P
indicator. .
@ At sign _Deferred addressing indicator.
(Left parenthesis Initial register indicator. £
) Right parenthesis | Terminal register indicator.
. ~ Period | Current location counter
, Comma Operand field separator.
; Semicolon Comment field indicator.
< Left angle Initial argﬁménﬁ”or‘éxpressién
bracket indicator.
> Right angle Terminal argument or expres-
- bracket sion 1ndlcator. ‘
+ Plus sign Arithmetic 'aédltlon operator
or autoincrement lndlcator.
- Minus sign Arlthmetlc subtractlon opera- .
5 B I tor ot autodecrement indica=
“ftor.,‘
* Asterisk Arlthmetxc multipllcatlon op-
: erator. E
/ Slash Arithmetic division operator;
& Ampersand ' Logical AND operator.
! Exclamation point Logical inclusive ORboperator.: *w%
" Double quote Double ASCII character indica-—
tor.
! Single quote Single ASCII character indica-~
: e tor; " or concatenation
indicator. £
- “Up arrow or Universal unary operator or
circumflex argument indicator.
AN - Backslash “'Macro call numeric argument h
i1 sl med ' indicator.

SYMBOLS AND EXPRESSIONS

Table 3-2 ,
Legal Separating Characters

Character Definition Usage
- Space One or more spaces K space’ ‘g a Jegal separator
and/or tabs ,between 1nstruct10n flelds and
L : arguments
field,
L ‘axpressians are
‘ '(sée 4ectlon 3. 9}

’ Comma - A comma is a legal separahor
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field wmust be
‘separated by a comma.

Table 3~3
Legal Argument Delimiters
Character Definition v iUgage

L I Kewu? _Paired angle brackets 'Palred angle brackets may be
; ‘ e - s in‘a program to
XpI for
‘single term.
brackets are also
used to enc¢lose a macro
| argument, particularly when
-1 that argument contains separ~
ating characters (see Section

7.3)‘

“XeaoX Up~arrow (unary oper- This construction is equiva-
ator) = construction, lent in function to the paired
where the up-arrow is | angle brackets described above

~followed by an argu- and 1is generally used only.
ment that is bracketed where the argument itself con-~
by any paired printing tains angle brackets.
. characters (x). .
3.1.2 1Illegal Characters

A character is determined to be 1llega1 fo: ene of two :easons.

1. A character is not an element

character set.

‘in’ the assembly listing (see’
this is an embedded null whlcﬁ, when éetected. terminatas the

scan af the ¢urrent line.

of the recegnized MACRO-11

A character of this kind is reglaced in the
lestiﬁg by a question mark, and an error coée {I) is

~printed

Ag@endxx D). 'The exception to

SYMBOLS AND EXPRESSIONS.

2. A legal MACRO-1l1l character is illegal in the context of its
usage within the = source . statement, i.e., its syntax is
illegal or questionable. Such a character causes an error
code (Q}) to be printed in the assembly listing. '

3.1.3 . Unary and Binary Operators

‘Legal MACRO-11 ﬁnaky‘operators are described in Table 3-4. Unary

operators - are used . in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. A term preceded by a unary operator is considered to

contain that operator. The term so specified thus becomes a value

which can be used alone or as an element of an expression.

Table 3-4
. Legal Unary Operators

Unary .
Operator Explanation Example Effect
+ Plus sign A Produces the positive
value of A.
- Minus sign -A y - Produces the negat;ve{
(2's complement) value Ofi
A, :
A Up-arraw, univer- ~c24 ' Produces the 1l's comple-
| sal unary operator. ment value of 24(8).
-(This usage . is ,
described in detail “D127 Interprets 127 as a

decimal number

“in Sectxon 6.4.)

~034 Interprets 34 as an cctal
number.

binary number.

"RABC | Evaluates ABC in Radix-50
form,

"B11000111 | Interprets 11000111 as a

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below: , o

2 DSO . (Equivalent to =<"D50>)
“c 012 (Equlvalent to "C< 012>)

Legal MACRO-ll bznary cpexatars are descrlbed 1n T'ble 3-5, In

‘contrast- to wunary operators, binary operators. speczfy actions to be
~performed on multiple. items or terms within an ex§tession.A Table 3-5
.shows - the relationships. - that -can; be- establz&hed between exp:ess1on
terms through the use of binary operators. e

2,

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators
Binary
Operator Explanation Example
+ Addition A+B
- Subtraction : : A-B
* Multiplication A*B (l6-bit ?roduct returned)
/ Division A/B’(IG-bit guotient returned)
& Logical AND A&B
i Logical inclusive OR AlB

All binary operators have egual priority. Items or terms can be
grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples
below:

.WORD 1+2*3 ;EQUALS 11(8).
. WORD 14<2%3> +EQUALS 7(8).

3.2 MACRO-11 SYMBOLS

Three types of symbols may be defined for use within MACRO-11 source
programs: permanent symbols, user—-defined symbols, and macro symbols.
MACRO~11 maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST)y. The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO-11 and is part of the MACRO-1ll
image. The UST and MST are constructed as the source program is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters & and 7 and Appendix B).
These symbols are a permanent part of the MACRO~1l image and need not
be defined before being used in' ‘the operator field of a MACRO-1l1l
source statement (see Section 2.2.2).

3.2.2 User~Defined and Macro Symbols

User—~defined symbols are those symbols treated by the programmer as
labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User
Symbol Table as they atre encountered during assembly. Macro symbols
are those symbols used as macro nameés (see Section 7.1). Similarly,
these symbols are added to the Macro Symbol Table as they are
encountered during assembly.

3-5

SYMBOLS AND EXPRESSIONS

User~defined and macro symbols can be composed of alphanumeric
characters, dollar signs (§), and periods (.) only; any other
character is illegal.

NOTE

The dollar sign ($) and period (.) characters are
reserved for wuse in defining Digital Equipment
Corporation system software symbols. For example,
READS is a file-processing system macro. The user
is cautioned not to employ these characters in
constructing user-defined symbols or macro symbols
in order to avoid possible conflicts with existing
or future Digital Equipment Corporation system
software symbols.

The following rules govern the creation of user-defined and macro
symbols:

1. The first character of a symbol must not be a number ({except
in the case of local symbols; see Section 3.5).

2. The first six characters of a symbol must be unique.

3, A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACRO-11.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO-1l character set is defined
in Section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be any one of the three
symbol types described above i.e., permanent, user-defined, macro. To
determine the value of an operator-field symbol, MACRO~11l searches the
symbol tables in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. That is, permanent symbols may be used as
macro symbols. But the user must keep in mind the sequence in which
the search for symbols is performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a global (external)
attribute.

Normally, MACRO-11l treats all user-defined symbols as local, that is,
their definition is limited to the module 1in which they appear.
However, symbols can be explicitly declared to Dbe global symbols
through one of three methods:

A7
£ By

SYMBOLS AND EXPRESSIONS

1. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double egqual (==) sign in a direct assignment
statement (see Section 3.3).

All symbbls within a module that remain undefined at the end of
assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly are
assigned a wvalue of 0 and placed into the
user-defined symbol table as undefined default
global references. If the .DSABL GBL directive is
in . effect, however, (see Section 6.2), the
automatic global reference default function of
MACRO-11 is inhibited, causing the statement
containing the undefined symbol to be flagged with
an error code (U) in the assembly 1listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer control -throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
A direct assignment statement allows you to egquate a symbol to a
specific value. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User~Defined Symbol
Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol.
The general format for a direct assignment statement is:
symbol=expression

or
symbol==expression

where: expression = can have only one level of forward reference
-(see 5. Dbelow).

- cannot contain an undefined global reference.

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as global (see Section 6.9).

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements:

A=] ;THE SYMBOL A IS EQUATED TO THE
;VALUE 1.
B=A~1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE

sVALUE OF THE ENTIRE EXPRESSION
sWHICH FOLLOWS.

C:
D=. sTHE SYMBOL D IS EQUATED TO ., AND
E: MOV #1,ABLE ;THE LABELS C AND E ARE ASSIGNED A

;VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

The last of the three examples above is provided only to illustrate
the performance of MACRO-11l in such situations. See Section 3.6 for a
description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y (Illegal forward reference)
Y=z (Legal forward reference)
zZ=1

The above example would result in the generation of an error code (U)
in the assembly 1listing on the line containing the illegal forward
reference.

Although one level of forward referencing is allowed for local
symbols, a global symbol defined in a direct assignment statement must
not c¢ontain a forward reference, i.e., the global assignment
expression must not itself contain an undefined reference to another
symbol. Such a forward reference is illegal, causing an error code
(A) to be generated in the assembly listing.

SYMBOLS AND EXPRESSIONS

3.4 REGISTER S5YMBOLS

The eight general registers of the PDP~1ll processor are numbered 0
through 7 and can be expressed in the source program in the following
manner: '

30
%1

-

%7

where % indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.
Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by
MACRO-11, i.e., these definitions are the normal default values and
remain valid for ‘all register references within the source program.

RO=%0 ;REGISTER 0 DEFINITION.
R1=%1 sREGISTER 1 DEFINITION.
R2=%2 ;REGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 sREGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION.
SP=%6 ;STACK POINTER DEFINITION.
PC=%7 ; PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions. ' '

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value. Although you can reassign the
standard register symbols through the use of the .DSABL REG directive
(see Section 6.2), this practice is not recommended. An attempt to
redefine a default register symbol without first specifying the .DSABL
REG directive to override the normal register definitions causes that
assignment statement to be flagged with an error code (R} in the
assembly 1listing. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP~ll system programs. For this reason, vyou are
well advised to follow these conventions.

A1l non=-standard register symbols must be defined before they are
referenced 1in the source program. A register expression less than 0
or greater than 7 is flagged with an error code (R) in the assembly
listing.

The % character may be used with any legal term or expression to
specify a register. For example, the statement

CLR $3+1
is equivalent in function to the statement
CLR %4

and clears the contents of register 4.

3-9

SYMBOLS AND EXPRESSIONS

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of <coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

18
273
59%

104s

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3~1). HNote that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does
not c¢reate a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol bleock is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a local symbol block 1is delimited through
MACRO-11l directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2)
Ending delimiter: .ENABL LSB
or
.DSABL LSB (see Section 6.2)
followed by one of: Symbolic label

.PSECT (see Section 6.8.1)
.CSECT (see Section 6.8.2)
.ASECT (see Section 6.8.2)

Local symbols provide a convenient means of generating 1labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. . In addition,
the use of local symbols differentiates entry-point labels from 1local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appeat. in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings.

P

U

'

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table space than other types of
symbols. Their use is recommended. When defining local symbols, use
the range from 18% to 63% first, then the range from 128§ .to 655358,
Local symbols within the range 645 through 127%, inclusive, can be
generated automatically as a feature of MACRO~ll. Such local symbols
are useful in the expansion of macros during assembly and are
described in detail in this context in Section 7.3.5.

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local. ‘symbol block, each symbol
represents a different address value. Such a multi~defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121 }
122) PROGRAM INITIALIZAYION CODE

123) : ,
124)

125 oofeed LPSECY XCTPRG,GBL

126 @@#R28p 912780 ereRewR! XCTPRGY MOV HIMPURE,RD FIMPURE DATA INITISLIZATION
127 #apepa wBSA20 : 181 CLR {(RB3e

128 Qounps Q22792 peecsee! CoLMP HIMPURT,R&

129 Q@BR1z 181374 BNl o g

138 o

131 eoeane LPSECT xCTPAS,GBL

132 goesead e127p0 epRapR! XCTPASTE%OY RIMPPAS,RE CBPASS INITIALIZATION

133 Pooeed QRSA2a 181 LR (RBY+ : i

134 PaABARS P227s0 AEPARY! P $IMPPAT,RD

135 gnemi2 121374 Brl 1%

136

137 eeeepe (PSECT XCTLIN,GBL

138 gosean @127en prRpdR! XCTLINEIMOY SIMPLIN,RS FLINE INTTIALIZATION

139 pameed @esa2e 181 LLR (R@) e '

142 Qneas pe27ed - gnpaanl Lmp RIMBL 1T, R

141 2ae@i2 141374 -3 1%

142

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.} is the symbol for the current location c¢ounter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction, as shown in the first example
below. When wused in the operand field of a MACRO-11 directive, it
represents the address of the current byte or word, as -shown in the
second example below. ‘

Az MOV #.:R0 ;THE PERIOD (.) REFERS TQ THE ADDRESS
: ;OF THE MOV INSTRUCTION. :

(Tbe function of the # symbol is explained in Section 5.9.)

SAL=0
-WORD 177535, .+4,SAL ;THE OPERAND .+4 IN THE .WORD
;DIRECTIVE REPRESENTS A VALUE
;THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING
sASSEMBLY.

Assume that the current value of the location counter is 500. Buring
assembly, MACRO-1ll reserves storage in response to the .WORD directive
{see Section 6.3.2), beginning with location 500. The operands
accompanying the .WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by
.+4 is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute

value 4, thereby depositing the value 506 in location 502. 'Finally,
ghi value of SAL, previously equated to 0, is deposited in 1location
04.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11l resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location
counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACRO~11 symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it: it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the use of the .PSECT directive
described in Section 6.8.1.) The existing attribute (or mode} of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the 1location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the 1location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that 1is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in
the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, 1its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
.CSECT), as described in Section 6.8.

The following coding illustrates the use of the current 1location
counter:

3-12

Xﬂ\%
3

%,

SYMBOLS AND EXPRESSIONS

.ASECT
.=500 ;SET LOCATION COUNTER TO
;ABSOLUTE 500 (OCTAL).
FIRST: MOV .+10,COUNT ;THE LABEL "FIRST" HAS THE VALUE
1500 (OCTAL) .

,.+10 ‘EQUALS SlQ(OCTAL) THE
;CONTENTS OF THE LOCATION
;510 (OCTAL) WILL BE DEPOSITED
, sIN THE LOCATION "COUNT."
.=520 ;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
sABSOLUTE 520 (OCTAL).
SECOND: MOV + yINDEX ;THE LABEL SECOND HAS THE
;VALUE 520 (OCTAL).
; THE CONTENTS OF LOCATION
;520 (0CTAL), THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
;ITSELF, WILL BE DEPOSITED IN THE
; LOCATION "INDEX."
.PSECT
«=.+20 3SET LOCATION COUNTER TO
s RELOCATABLE 20 OF THE
; UNNAMED PROGRAM SECTION. .
THIRD: .WORD 0 ;THE LABEL THIRD HAS THE
:VALUE OF RELOCATABLE 20,

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements: Co

.=.+40
or
.BLKB 40
or
.BLKW 20

reserves 40(8) bytes of storage space in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive (see Section 6.4.1.1). Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators {see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code (N) is generated in the
assembly listing. However, MACRO-1ll continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

3-13

Negative

SYMBOLS AND EXPRESSIONS

numbers must be preceded by a minus sign; MACRO-11

translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits, i.e., greater than
177777(8), 1is truncated from the left and flagged with an error code
(T} in the assembly listing.

Numbers are always considered to be absolute values, i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 7 6 0

Sign 8-bit 7=bit
Bit Exponent Mantissa e

Refer to the appropriate PDP-11 Procegsor Handbook for details of the
floating-point number format.

3.8 TERMS
A term is a component of an expression and may be one of the
following: -
1. A number, as defined in Section 3.7, whose 16-bit value 1is
used.
2. A symbol, as defined in Section 3.2. Symbols are -evaluated

as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used. S

¢. A permanent symbol's basic value is used, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
{see Section 6.2) 1is in effect, the automatic global
reference default function of MACRO-11 is inhibited, in
which case, the statement containing the undefined symbol

~is flagged with an error code (U) in the assembly
listing.
3. A single quote followed by a single ASCII character, or a

double quote followed by two ASCII characters. This type of
expression construction is explained in detail in Section
6.3.3. ' :

3-14

D

e

£ kS
i

SYMBOLS AND EXPRESSIONS

4. A term may also be an expression enclosed in angle brackets
{<>}. Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>}, or to appiy a unary operator to an
entire expression (as in =<A+B>).

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are comhinatians of terms joined together by binary
operators (see Table 3-5) and which reduce to a 16-bit expression
value. The evaluation of an expzess;on intludes the determination of
its attributes. A resultant expression value may be any one of four
types {as described later in this section): absolute, relocatable,
external, or complex relocatable. SRR

Expre551ons are evaluated from left to right with no operator
hierarchy rules, except that wunary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. {Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows: ’

PR
is equivalent to:
=<{+L=A>>

A missing term, expression, or external symbol 1is interpreted as a
Zero. A missing or illegal operator terminates the expression
analysis, causing an error code (A) or {Q), or both, to be generated
in the assembly listing, depenéing on ‘the context of the expression
itself. For example, the expression:

TAG ! LA 177777
is evaluated as
TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator {i.e., a comma), Or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces w1th1n expressions are ignored.

The value of an external expression is egqual to the wvalue of the
absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" is an external symbol, has a value at
assembly~time that is equal to the value of the internal symbol A.
This expression, however, when evaluated at link time takes on the
resolved value of the symbol EXTERN, plus the value of symbol A.

Expressions, when evaluated by MACRO-11l, are determined to be one of
four types: absolute, relocatable, external {or global)}, or complex
relocatable. The following distinctions are important:
1. An expression is absolute if its value is fixed. An
expression whose terms are numbers and ASCII conversion

3-15

SYMBOLS AND EXPRESSIONS

characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO-11 upon completion of the expression
scan. For example, the expression TAG2-TAGl, where both TAGL
and TAG2 are defined in the same program section, is an
absolute expression. Terms that contain labels defined in an
absolute section will have an absolute value.

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at link time.
Terms that contain labels defined 1in relocatable program
sections will have a relocatable value; similarly, a period
(.} in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value. :

.3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partially defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any of the following
conditions applies:

- It contains a global reference and a relocatable symbol.
— It contains more than one global reference.

- It «contains relocatable terms belonging to different
program sections.

- The value resulting from the expression has more than one
level of relocation. For example, 1if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

- An operation other than addition is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

ey

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11 is an object module that must be processed or
linked@ before it can be loaded and executed. Essentially, linking
fixes (i.e., makes absolute) the values of external or relocatable
symbols in the object module, thus transforming the object module, or
several such object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACRO-1l1
outputs certain directives in the object file, together with other
required parameters. In the case of relocatable expressions in the
object module, the base of the associated relocatable program section
is added to the value of the relocatable expression provided by
MACRO~11. 1In the case of external expression values, the value of the
external term in the expression (since the external symbol must be
defined in one of the other object modules being linked together) is
determined and then added to the absolute portion of the external
expression, as provided by MACRO-1l.

All instructions that require modification at link time are flagged in
the assembly 1listing, as illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:
005065 CLR EXTERN (R5) sTHE VALUE OF THE SYMBOL "EXTERN" IS
000000G sASSEMBLED AS ZERO AND IS
sRESOLVED AT LINK TIME.
005065 CLR EXTERN+6 (R5) ;THE VALUE OF THE SYMBOL "EXTERN"
G ;IS RESOLVED AT LINK TIME
;AND ADDED TO THE ABSOLUTE
;:PORTION (+6) OF THE EXPRESSION.
005065 CLR RELOC (R5) ;ASSUMING THAT THE VALUE OF THE
000040 SYMBOL "RELOC" IS RELOCATABLE
40, THE RELOCATION BIAS
sWILL BE ADDED TO THIS VALUE.
005065 CLR -<EXTERN+RELOC>» {(R5) ;THIS EXPRESSION IS COMPLEX
000000C ;RELOCATABLE BECAUSE IT REQUIRES

;THE NEGATION OF AN EXPRESSION
;THAT CONTAINS A GLOBAL "EXTERN"
;REFERENCE AND A RELOCATABLE TERM.

For a complete description of object records output by MACRO-1l, refer
to the applicable system manual (see Section 0.3 in the Preface}.

4-1

ey,

e

W

Lo

CHAPTER 5
ADDRESSING MODES

The program counter (PC) always contains the address of the next word
to be fetched, 1i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically 1ncrementeé by 2 after ‘the fetch operation is
completed.”

In the case of 2~ or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are used in describing addressing modes
throughout this chapter:

1. E is any expression, as defined in Chapter 3.
2. R is a register expression, i.e., any expression containing a

term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

RO=%0 ;GENERAL REGISTER 0.
R1=RO+1 ;GENERAL REGISTER 1.

R2=1+%1 ;GENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions (see Section 3.4). '

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4. A is a general addressing specification which produces a
6-bit mode address field, as described in the PDP-1ll1
Processor Handbooks. The addressing specification, A, is
described in terms of E, R, and ER, as defined above. Each
addressing specification within this section -is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

ADDRESSING MODES

Format for A: R

Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R} contains the

by the instruction.

Format for A: @R or (ER)

Examples:
CLR @r1l sALL THESE INSTRUCTIONS CLEAR
CLR {R1) ;s THE WORD AT THE ADDRESS
CLR (1) ;CONTAINED IN REGISTER 1.

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately
being used as the address of the operand (see Note below).

Format for A: (ER) +

Examples:

CLR (RO)+ ;EACH INSTRUCTION CLEARS

CLR {(R4)+ ;THE WORD AT THE ADDRESS

CLR {R2)+ . ;CONTAINED IN THE SPECIFIED
;REGISTER AND INCREMENTS
; THAT REGISTER'S CONTENTS
:BY TwWO.
NOTE

Certain special ihstruction/address mode

combinations, which are rarely or never used, do
not operate exactly the same on all PDP-11
processors, as described below.

In the autoincrement mode, both the JMP and JSR
instructions autoincrement the register before its
use on the PDP-11/40, but not on the PDP-11/45 or
11/10.

In double operand instructions having the
addressing form Rn,{Rn)+ or Rn,-{Rn), where the
source and destination registers are the same, the
source operand is evaluated as the autoincremented
or autodecremented value, but the destination
register, at the time it is used, still contains
the originally-intended effective address. 1In the
following example, as executed on the PDP-11/40,
Register 0 originally contains 100(8):

addresskof the operand to be manipulated

& B
£

- ADDRESSING HODES

MOV RO, (RO) + ;s THE QUANTITY 102 IS MOVED
;TO LOCATION 100.

MOV RO, - (RO) ° ;THE QUANTITY 76 IS MOVED
‘ 'TO LOCATION 100,

The use of these forms should be avoided, 'since
they are not compatible with the entire family of
PDP~11 processors.

An error code (Z) is printed in the assembly
listing with each instruction which 1is not
compatible among all members of the PDP-1ll family.

5.4 AUTOINCREMENT DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as a
pointer.

Format for A: @(ER)+
Example:
CLR @(R3)+ ;s THE CO&TENTS’OF REGISTER 3 POINT
;TO THE ADDRESS OF A WORD TO BE

; CLEARED BEFORE THE CONTENTS OF THE
;:REGISTER ARE INCREMENTED BY TWO.

5.5 AUTODECREMENT MODE

The contents of the register {ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A: - (ER}
Examples:
CLR - (RO) sDECREMENT THE CONTENTS OF THE SPECI-
sFIED-REGISTER {0, 3, OR 2) BY TWO
CLR -(R3) sBEFORE USING ITS CONTENTS
CLR -~ (R2) ;AS THE ADDRESS OF THE WORD TO BE
;s CLEARED.

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Format for A: @- (ER)
Example:

CLR @-(R2) ;DECREMENT THE CONTENTS OF
sREGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
; CLEARED.

ADDRESSING MODES

5.7 INDEX MODE .

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E (ER)
Examples:

CLR X+2 (R1) ;THE EFFECTIVE ADDRESS OF THE WORD N
;TO BE CLEARED IS X+2, PLUS THE
; CONTENTS OF REGISTER 1.
MOV RU,-2(R3) ;THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
;THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE

An expression (E), plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: @E (ER)

Example:
CLR @114 (R4) tIF REGISTER 4 CONTAINS 100, THIS
;VALUE, PLUS THE OFFSET 114, YIELDS
s THE POINTER 214. 1IF LOCATION 214
; CONTAINS THE ADDRESS 2000, LOCATION
2000 WOULD BE CLEARED.
5.9 1IMMEDIATE MODE o

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: #E

Examples: "
MOV #100,R0 sMOVE THE VALUE 100 INTO REGISTER 0.
MOV #X,R0 ;MOVE THE VALUE OF SYMBOL X INTO

;REGISTER 0.

iy

The number sign (#) in the MACRO-11 character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO-11 that the operand
itself immediately follows the instruction word.

#*

ADDRESSING MODES
The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:
Location 20: 01 2 7 00
Location 22: 0 0 0 1 0 O

Location 24: Next instruction

‘Note that the source operand (the value 100) is assembled immediately

following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 {which contains the source operand).

After the next fetch and increment cycle, ihe sourée operand (100) is
moved into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word is taken as the
absolute address of the operand. Absolute mode is assembled .as an
autoincrement deferred of the PC, ;

Format for A: Q§E

Examples:
MOV @#100,R0 sMOVE THE CONTENTS OF ABSOLUTE
;s LOCATION 100 INTO REGISTER RO.
CLR e#x ;CLEAR THE CONTENTS OF THE LOCATION

;WHOSE ADDRESS 15 SPECIFIED BY
; THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @#100,R0; which assembles as two words:

Location 20: 01 3 7 0 0O
Location 22: 0 ¢ ¢ 1 Q0 O
Location 24: Next ingtruction

Note that the absolute address 100 is assembled immediately following
the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
{which contains the absolute address of the source ogperand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, leaving the PC
pointing to leocation 24 (the next instruction).

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within vyour
program. It is assembled as index mode, using the PC as the index
register.

§=5

ADDRESSING MODES

Format for A: E

Examples:
CLR 100 ;CLEAR ABSOLUTE LOCATION 100
MOV RO,Y ;MOVE THE CONTENTS OF REGISTER 0

; TO LOCATION ¥

In relative mode, the offset for the address calculation is assembled
as ‘the second or third word of the instruction. This value is added
to the contents of the PC (the base register} to yield the address of
the source operand.

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 0 1 6 7 0 3
Location 22: 0 0 0 0 5 4
Location 24: Next instruction

Note that the constant 54 1is assembled immediately following the
instruction word, i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by 2 so that it points to location 22
(containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction}). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8y), causing the contents of
location 100 to be moved into register 3.

Since MACRO-11l considers the contents of the current location counter
(.) as the address of the first word of the instruction, an eguivalent
index mode statement is shown below:

MOV 100-.-4(PC),R3

This instruction has a relative addressing mode because the operand
address is calculated relative to the current value of the location
counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: @E
Example:
MOV @x,R0 sRELATIVE TO THE CURRENT VALUE OF
sTHE PC, MOVE THE CONTENTS OF THE

; LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER 0.

K

£

£

ADDRESSING MODES

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP~11 instruction takes at least one word.

listed below do not increase the length of an instruction.

Operands of the following forms add one word to

Form Meaning

R Register mode

@R or (ER) Register deferred mode {see Note below)
(ER)+ Autoincrement mode

@ (ER) + Autoincrement deferred mode

- (ER} Autodecrement mode

@~ (ER) Autodecrement deferred mode

for each occurrence of an operand of that form:

The syntax of the addressing modes is summarized in Appendix

Additional
applicable

Form Meaning

E (ER) Index mode

@QE (ER) Index deferred mode

#E Immediate mode

Q¥E Absolute mode (see Note below)
E Relati;e mode

@E Relative deferred mode

discussion of addressing modes is provided
PDP-11 Processor Handbook.

NOTE

An alternate form for @R is (ER). However, the
form @(ER) is only logically, but not physically
equivalent to the expression @0 (ER) . The
addressing form @#E differs from form E in that
the second or third word of the instruction
contains ‘the absolute address of the operand,
rather than the relative distance between the
operand and the PC. Thus, the instruction CLR
@#100 clears absolute location 100, even if the
instruction is moved from the point at which it
was assembled. See the description of the .ENABL
AMA function in Section 6.2, which causes all
relative mode addresses to be assembled as
absolute mode addresses.

5-7

in

Operénds of the form

the instruction length

B.
the

ADDRESSING MODES

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign}), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2, Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the
branch instruction; hence, the factor -2 in the following
calculation:

Word offset = (E~PC)/2 truncated to eight bits.
Since the value of the PC = .+2, we have:
Word offset = (E=~.-2)}/2 truncated to eight bits.

In using branch instructions, you must exercise care to avoid the
following error conditions:

1. Branching from one program section to another;

2. Branching to a location that is defined as an external
(glebal) symbol; or

3. Specifying a branch address that is out of range, i.e., the
branch offset 1is a value that does not lie within the range
-128(¢10) to +127(10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error.

5.15 USING TRAP INSTRUCTIONS

The EMT and TRAP instructions 4o not use the low-order byte of the
instruction word, allowing information to be transferred to the trap
handlers in the low—-order byte. If the EMT or TRAP instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it is truncated to eight bits and an error code (T) is
generated in the assembly listing.

i

S

h

PART III

MACRO~11 DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACRO-11.
Directives are statements that cause MACRO~1l to perform certain
operations during assembly. Chapter 6 describes several types of
directives, including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding segquences.

MACRO-11 directives can be preceded by a 1label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO-1l directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; legal operands differ with each directive specified.

=

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:
1. Listing control
2. Function control
3. Data storage
4. Radix and numeric control
5. Location counter control
6. Terminators '
7. Program boundaries
. Program sectioning
. Symbol control
10. Conditional assembly
11. PAL-11R conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all 1line printer and teleprinter listing output generated during
assembly. Facilities also exist for creating object module names and
other identification information in the listing output.

6.1.1 L.LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO-11
program through the .LIST and .NLIST directives. These directives are
of the form:

LLIST
.LIST arg
+NLIST
.NLIST arg

GENERAL ASSEMBLER DIRECTIVES

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

As indicated above, the listing control directives may be used without
arguments, 1in which case the 1listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the 1listing level count is
incremented; at each occurrence of an .NLIST directive, the listing
level count is decremented. When the listing level count is negative,
the listing is suppressed {(unless the 1line contains an error).
Conversely, when the listing 1level count is greater than zero, the
listing is always generated. Finally, when the count 1is zero, the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRG LTEST ;LIST TEST
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS O.
LNLIST ;LISTING LEVEL COUNT IS -1.
; B~THIS LINE SHOULD NOT LIST
.NLIST ;LISTING LEVEL COUNT IS -2.
; C~-THIS LINE SHOULD NOT LIST
LLIST ;LISTING LEVEL COUNT IS -1.
; D-THIS LINE SHOULD NOT LIST
LLIST ;LISTING LEVEL COUNT IS 0.
; E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS BACK TO 0.
. ENDM
LLIST ME ;LIST MACRO EXPANSION.
LTEST ;CALL THE MACRO
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS O.
; E-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS BACK TO 0.

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count; however, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

+MACRO XX
.LIST ;LIST NEXT LINE.
X=,
.NLIST ;DO NOT LIST REMAINDER OF MACRO
. ; EXPANSION,
. ENDM
.NLIST ME ;DO NOT LIST MACRO EXPANSIONS.
XX
X=,

The symbolic arguments allowed for use with the listing directives are

described in Table 6-1. These arquments can be used singly or in

combination with each other. If multiple arguments are specified in a

listing directive, each argument must be separated by a comma, tab, or
6-2

£

GENERAL ASSEMBLER DIRECTIVES

space. For any argument not specifically included in a listing
control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives alsoc appear in Table 6-1.

Symbolic Arguments

Table 6-1
of Listing Control Directives

Argument

Default

Function

SEQ*

LOC*

BIN*

BEX

BRC*

List

List

List

List

‘List

Controls the 1listing of source line
sequence numbers. MACRO-11 assigns
segquence number 1 to the first source
line in a file, and increments the
sequence number for each additional line
in the file. If this field is
suppressed through an LNLIST SEQ
directive, MACRO-11 generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields in the 1listing
remain undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions. For
any line in error, an appropriate error
flag is printed preceding the line
sequence number field (see Appendix D).
MACRO-11 does not assign seguence
numbers for files that have had sequence
numbers assigned by other programs, such
as an editor.

Controls the 1listing of the current
location counter field. Normally, this
field is not suppressed. However, if it
is suppressed through the ,NLIST LOC
directive, MACRO-11 does not generate a
tab, nor does it allocate space for the
field, as is the case with the source
line sequence number field {SEQ)
described above. Thus, the suppression
of the current 1location counter (LOC)
field effectively left-justifies all
subsequent fields (while preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

Controls the listing of generated binary
code. If this field 1is suppressed
through an LNLIST BIN directive,
left~justification of the source code
field occurs in the same manner
described above for the current location
counter (LOC) field.

Controls the listing of binary
extensions, i.e., the locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument. '

Controls the listing of source lines.

{Continuved on next page)
6-3

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument

Default

Function

COM

MD

MC

ME

MEB

CND

LD

TOC

SYM

TTM

List

List

List

No list

No list

List

No list

List

List

List

Controls the listing of comments. This
is a subset of the SRC argument. The
NLIST COM directive reduces listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A L.LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the 1listing of unsatisfied
conditional <c¢oding and associated .IF
and L.ENDC directives in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the 1listing of all 1listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

Controls the listing of the symbol table
resulting from the assembly of the
source program.

Controls the listing output format. The
default can be set by the system
manager. If the system manager does not
set a default, it is set to line printer
format. Figure 6-1 illustrates the line
printer output format. Figure 6-2
illustrates the teleprinter output
format.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the

same time, i.e.,

if all four significant fields in the listing are to

be suppressed, the printing of the resulting blank line is inhibited.

6-4

GENERAL ASSEMBLER DIRECTIVES

An example of an assembly listing, as sent to a 132-column line
printer, is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the
same format as for an 80-column line printer), is shown in Figure 6-2,
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to BU characters by the assembler.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code {A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-11l (see the
appropriate system manual). The use of these switches overrides all
corresponding listing control (.LIST or .NLIST) directives specified
in the source program.

§

o

A

butasTtI ATqWessy 193utid surT yo ordwexy T-9 2anbrg

ANIT ONYWWO0D ¥3IKLONY L139f 1394nr EL] 2ip@ee 22¢1¢0 692

N¥3§ LNdNI WLIM 3INNILNOD *§$3Af 3jsuvdl INg @9c1o8 o2L1¢e gre

1833dS INdNI TYNOILIQAV! (@H)LVIS®34u0W*SIw gile 100080 020008 094281 Zi1Lled (v2

3S¥Vd JIINVW3S 40 SLNE3x 3ILvNIvAIS 8NIvA3 1v3 90108 9ve

H0uH3 NO oINSt CEET]] 8§38 LdvERY v@Ll00 ge2

0 2345 iNdNI 3SHVdY IRLiMERLNdINT Y c$182 . 999122 vv2

5] AB3L/79D ZISY MOS BN30T LINIS ZLIN] 1193 t3guvdl 299100 ¢rZ

> 39vE8Iw NYIE LNJNI ON3ISH{ Q¥ Ldl Widal sE9teR 2wz

m“ NYIS LNdLND WLIM INNIINDD “$3As 3SHvd0 ING @9Cten pEoled Tp2

3 4833dS INdiN0 TYNDILIQAVE (@H)LVIS*I‘HOW'SIN 8418 1odere @Z2BYR ©@9L2EY 9291ed ev2

i« 364Yd JILNVWIS 40 SLINS3IH ILvNivadt gNIYA3 vl 229ted 6€2

[H0¥¥3 NO gINSt ¥¥3IZSI §38 irvg@l 229198 sfe |

mm 1348 iNdLN0 3ISHVA! HIMSHf IN44iN07 41 340] Zeagtee (g2

L834/77v2 2182 W04 SNINT LINIM ELiINI 11¥2 t3gevd0 946108 9C2

o JO¥SEIW NVIE LNdLIN0 ONISH 0y *id0 wWidal Zsqted sge2
w 39Y683IW SNLivLIS NOIS TvNnO3I On3st er’no3l W3dAl 1591 925168 pe2 0
m ONNO4 NOIS vND3 JLVIIGNI ‘38734 L168N03 8INI 91pgosLl L925@1 22sled ¢ge2 i
= N3IE LON NIIS vNOD3 41 dlINsSt $e! WEL] Zovigl @2giee 2¢2 (¥

5] SNIVLS NI3MIL (@u)LvisS*a'no3‘son 8418 100000 @voedw B9L2f! 21giew g2

% UNAOS L0N NOTIS YyN0D3 IWNesyd Lignbi‘eaw GA0W CEPLT @90Q0e [942ZT1 pOSTEE 2f2

o INIT LXIN HO4 NIVA 4INS ‘VINN 414 NIL39 nig Zeolee zegiep 622

P INIT 40 HI9NFY wI3IMII (840 w3*2 iS4 1§52 Z00dYd ©9LGE8 SLivivd 22

L22

] 340w 504 AWLE N1L39 e §5980 vipied 922

& 39VSSIn ¥0MET XVINAS OnN3ISH erixis WidAL eGviee g22

= Lyvd ISV LND gN3SH Br#‘ (Bu)QIRI* I (BYIZ+QTI4"D IdAd pZyiee w22

mw lu¥d LS¥T 40 WL9NIT 3TvOt (88)Q w22 (an)AQ114°%2 ans Zoegee 9lgead @9099t Qlwles c22

Luvd 18414 40 «19N3T LONG3GH {(4)QIN3 34+ (48) ans 200099 @9929t1 2ipieoe 222

ONIYLS 40 Luvd LSYT 40 4GAv IvIS (@HIZeQII4°34(a8)0T1s°D cav 02000R 9108QY 094992 peviled 22

l¥ve ONODJ3S ANO ON3ISH $18(28)0714°2/(Bu)E+0114°%) 3dAld eggtee eeze

INTHLS 40 L¥vd LS¥I4 LNO ONISH $i#(dS)(PN¥)2Z+0 W32 3dAl 9ected sie

Lave 19814 40 HEON3T 3Lv N2V (d8){an)2+0 22 ang yR0240 9ilp99l 2iCive 812

I8 NI ¥OQV 80H¥T ONIMLIS L1Nd! (d8)=*{@y)2«QI4"D AOwW VZoeRd 9vvole 9eLIed 12

03433130 ¥08¥3 ON 41 HINVHEL §2 phel] PROERY viciee 912

QIWI*9+%T181092+0 W2 Hex 10109/ %1815 0n 1182 gecien ste

3INIT INdGNI 3L LNO GN3SH Biw’(Q8)0WI°9*(BH)2+0Q NI 9 3dAl g1 vseiee viz

L1Ix3 3873¢ S$4Ix3 gr2teve g12

¥0¥¥3 ON 41 aIxst [3% 338 geecetl py2lee 2t2

W29 YIA INDIT 139 #18729# $W29 INTL39 éveied 112

etz

S3INITT ONVWWOD 366Yd ONV O¥3M TLLRS® seez

S3INIT ANVWWOD 3SHYd ONV QVIY
S 39vd (PIGT PL=INT=60 (B/0W OMIVW Z2I1E2 ONY 1183 40 LS3L == L5iI62

‘GENERAL ASSEMBLER DIRECTIVES

f“ % CSITST we TESY OF CSI1 AND CSI2 MACRO MBZ7Q7 09=Jul=74 15159 PAGE 5
k READ AND RARSE CUMMAND LINES
289) «SBYTL READ AND PARSE COMMAND LINES
219
211 291230 GETLNY GCMLS #GCLBLK JGET LINE VIa GCML
212 201244 1232023 BCC 131 JIKIF IF NO ERROR
213 201246 EXITSS JELSE, EXIT
214 291254 181 TYPE G,CMLDe2(RR),G,CMLD{RG},s!2 FSEND OUT THE INPUT LINE
" 215 QdB1300 [-3% 3 #CSIBLK,GCLBLKG,CMLDe2,GCLBLKG,,CMLD
" 216 201324 123064 BCC 2% JBRANCH IF NO ERROR DETECTED
217 @a1326 215248 MOV CFILD#2(R2Y,=(SP) PPUT STRING ERROR ARDR IN STK
egoR20 ‘
218 AP1332 168818 suB C.LMLDe2(RB), (SP) FLALCULATE LENGTH OF FIRSY PART
2ep804 !
% 219 881336 TYPE C,CMLD«2(RD),(SP),n'S JSEND QUTY FIRST PART OF STRING
’ 228 931360 TYPE CoFILDe2(RYY,C FILDIRS), %1 JREND OUT SELOND PART
221 201404 Q666D ADD CL,FILO(RRY,C,FILDe2{RAY JCALC ADDR OF (AST PARY OF STRING
2eaets o : .
deenz2e
222 21412 162660 sus (SPY+,C,CMLDCRD) JDEDUCTY LENGYH OF FIRST PARTY
agees2
223 201416 1866063 3uB C,FILO(ROY,C LMLD(RE) FCALC LENGTH OF LAST PART
gaeais
eeeee2
i 224 QB1424 TYPE C,FILD+2(R),C . CMLD(RR), 840 18END OUT LAST PART
; 225 201450 TYPEM 3Tx,42 JSEND SYNTAX ERROR MESSAGE
226 221474 @RVESS BR GETLN JTRY FOR MORE
227
228 201476 @B5762 2% 787 C.CMLD(RS) JCNECK LENGTH OF LINE
2agre2 o :
229 Po1SP2 @B1652 BEG GETLN FIF NULL, SKIP BACK FOR NEXT LINE
238 BB1504 112767 MOVB ®13,EQUBLT JASSUME EQUAL 8IGN NOT FOUND
: ggened :
176432
231 ABi512 132768 BITR #C5,EQU,C,8TAT(RA) JCHECK STATUS
Beenda
220091
232 211520 @epi14e2 BEQ 12% JSKIP IF EQUAL SIGN NOT SEEN
233 aai%22 1985287 INCB EQUBIT JELSE, INDICATE EQUAL SIGN FOUND
g¥””x 176416
¥ 234 21526 1881 TYPEM £0U, 40 JSEND EQUAL SIGN BTATUS MESSAGE
235 231552 TYPEM 0PT,48 JSEND CQUTPUT SCAN MESSAGE
236 201576 OPARSE: Call INIT2 JINIT LOCNS FOR CSI2 CALL/TESY
237 pa16@2 €sIs2 JOUTPUT, #3wTBL JPARSE QUTPUT 3PEC
238 qri1620 {@3444 BCS CS2ERR ISKIP ON ERROR
239 ge1622 caLL Evaius JEVALUATE RESULTS OF SEMANTIL PARSE
240 001626 132768 BITB BCS,MOR,C,STAT(RG) aDDITIONAL OQUTPUTYT SPELS?
2p2e20
gageay
241 021634 GA1360 BNE OPARSE JYES, CONTINUE wWITH QUTPUT SCAN
242 2216386 TYPEM IPT, 49 JSEND INPUT SCAN MESSAGE
243 231662 IPARSEL CaALL INIT2 JINIT LOCNS FOR (812 CALL/TEST
244 0281666 csIs2 P INPUT , #SWTYBL JPARSE INPUT SPEC
§gﬁ%% 245 231704 183497 8CS CS52ERR ISKIP ON ERROR
i ‘ 246 voL7e6 caLy EvapLus JEVALUATE RESULYS OF SEMANYIL PARSE
247 @at712 132788 8178 #CS ,MOR,C,STAT(RB)Y JADDITIONAL INPUT SPECS?
eggezo
2280t
248 @31720 221358 8NE 1PARSE FTYES, CONTINUE w~IT# INPUT SLAN

Figure 6-2 Example of Terminal Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

Figure 6-3 shows a listing, produced in 1line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly 1listing
output.

6.1.2 Page Headings

MACRO~11l prints each assembly page in the format shown in either
Figure 6-1 or Figure 6-2, depending on the listing mode (see TTM,
Table 6-1). On the first line of each page, MACRO-1l1 prints the
following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see next section).

. Assembler version identification.
Date.

. Time-of-day.

(1] -3 (98] [2]
.

. Page number.

The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive (see Section
6.1.4).

GENERAL ASSEMBLER DIRECTIVES

S®ATIOBITA TOXIUOD BUTISTT UYITM peonpoiad BUTysTi £-9 SInbTA

ININWOD ¥ 81 SIwit
LS31 ANYNIB Q3ON3ILX3H

INIWW0D v §1 SIWid
1831 S¥IBWNN FININOISH

133443 NI §1 300W ONILSIT MOWNVYNI

X384 u0D
m-Q.mnNsa
X34 w03

1831 ABYNIA QI0NILX3 ONV SINIT INIWW0D! «X38'W03>»

W02

gfpigeett
w02
1834 S3INIT IN3WW0DIY w0l

X3g

mu«._n;ﬂ~n

x38
X38

03

givigiey

1511
ayow’
1S1In¢
Ivwisn

i817*

guon®
ISIN?
IVWLIET

03%
038

Wil

=1 39v49 62191 pL*IN[=60

an3’

i8I
quom*
1S1N*
Jvnis

517

quOm*

181N
JenisT

is17*

coveer zZeoeow

Gendae
ceodee 2eeqee

&

1leeeoe

124208

sepoRe
ropoRe
cedege
zeapee
100000

1eeQen

roeged
12egee

ezigee
p2iowe

Plleep
vilgee
giigee
(8§11
9atane

gsatleee

L248w QHIVH

rLOB80
vLi020R

v oo00
298gde

Zoegen

1 A4
v
144

114
ev
.14

L1
is

s€

ve
£8

NIVW*

2¢
it
ot

62
2

6-9

GENERAL ASSEMBLER DIRECTIVES

S®ATIOBATC TOI3U0D BUTISTT Y3ITM poonpoxd BUIlSTI

4831 §3NIT 3dun0st

INIWWOD Vv ST SIMLY

LS34 AMVNIG Q3IONILXIH

1834 AdYNIG Q3ILvy3dnN3Ot

INIWWOD ¥ ST SIHLt

1634 ¥3iNN0J NOILVIOTS

INIWKHDD v S1 SImMid

SNOISNYdX3 Oulv¥w LEBINM
133443 NI SI 300w INILSIT 301wt

88 isI1v*

JUE DYWAST

x38 is11*t
Girigre’y Quom®
X38 1SIIN'

X34 Jvwis"

NIB i811°
INIWW0D v ST SImld
N8B JvwlgT

207 i817°
giplgre’t

201

07T IVWLET

naN3*

oHY is1n’
grfriefey auom*
o¥Y LSIN'

94y J2¥YWiET 0HIVW’®

QuIvW LS3L TOHINDI INILSIN

ET
wii

1511
ASIIN®

e

i 39vd

(*3ued) €-9

‘fopveee

covepe

cs'rigre’l
Nig

ET-LN
181N

sanbta

S0epRe
20oeve

Zoeednd

quom*
L8IN'

fovene

62191 pL=N[=60

000080
1e00e0

1eeeee

S00800
ze2@ee

950000
aseeva

e500e0

Sceeew

sceere

vZeeoe
reoeee

veeees
100008

zieaee

LBLBN OQMIYHW

(14
°T4
ve

€2
12

2
61
81

-t (N D OO

‘NIvk®

10

|

kT

o~

GENERAL ASSEMBLER DIRECTIVES

6.1.3 .TITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non—blank characters following
the .TITLE directive. This name should be six Radix-50 characters or
less in length; any characters beyond the first six are checked for
ASCII 1legality, but they are not used as part of the object module
name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. Note that this
6~character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11, The name of
an object module (specified in the .TITLE directive} appears in the
load map produced at link time. This is also the module name which
the Librarian will recognize. '

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified 'in the 'source program, the last .TITLE directive
encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are 1gnored by MACRO-11 when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-spate/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
{A) in the assembly listing.

Section A.2 of Appendix A contains a table of Radix-50 characters.

6.1.4 .SBTTL Dixective

The .SBTTL directive is wused to produce _a table of contents
1mmeﬂ1ately preceding the assembly 1listing and to further identify
each page in the llstxng. In the latter case, the text following the
.SBTTL directive 1is printed as the second line of the header of each
page in the listing, continuing until altered by a subsequent .SBTTL
directive in the program. For example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES
causes the text
CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assembly
listing. '

During assembly pass 1, a table of contents is printed for the
assembly 1listing, containing the 1line seguence number, the page
number, and the text accompanying each .SBTTL directive. The 1listing
of the table of contents is suppressed whenever an JNLIST TOC
directive is encountered in the source program {see Table 6-1). An
example of a table of contents listing is shown in Figure 6-4.

6-11

GENERAL ASSEMBLER DIRECTIVES

CSITST == TEST OF CSI1 AND CS12 MACRO M@727 0@9eJULe74 15147
TABLE OF CONTENTS

2= 55 MACRO DEFINITIONS

3= 74 MESSAGE STRINGS

4=-153 MISCELLANEOUS 0ATA

5+209 READ AND PARSE COMMAND LINES
6+255 EVALUATE THE SEMANTIC ANALYSIS
7345 SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 L.IDENT Directive

The .IDENT directive provides an additional means of labeling the
object module produced by MACRO-11l. 1In addition to the name assigned
to the object module with the .TITLE directive {see Section 6.1.3), a
character string up to six Radix~50 characters can be specified
between paired printing delimiters to label the object module with the
program version number. This directive takes the following form:

.IDENT /string/

where: string represents six or fewer legal Radix~50 characters
which establish the program identification or
version number. This number is included in the
global symbol directory of the object module; the
first four characters are printed in the load map
and librarian listing.

/ / - represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .IDENT directive 1is flagged with an
error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:
.IDENT /VO5A/

The character string VO05A is converted to Radix~50 representation and
included 1in the global symbol directory of the object module. This
character string also appears in the load map produced at 1link time
and the Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,
the 1last such directive encountered establishes the character string
which forms part of the object module identification.

s,

e
S

P
E A

gqm’“‘z

GENERAL ASSEMBLER DIRECTIVES

6.1.6 .PAGE Directive/Page Ejection
Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate
teleprinter output into pages. The page number is not
changed.

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

. PAGE

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented and the line sequence counter
to be c¢leared. The .PAGE directive does not appear in the
listing.

When used within a macro definition, the .PAGE directive is
ignored during the assembly of the macro definition. Rather,
the page eject operation is performed as the macro itself |is
expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character is
encountered. I1f the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form—-feed character likewise -causes the -page number to be
incremented and the line sequence counter to be cleared.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACRO-11 through the
.ENABL and .DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACRO-11 functions and
operations incidental to the assembly process itself. These
directives take the following form:

.ENABL arg
.DSABL arg
where: arg represents one or more of the optional symbolic

arguments defined in Table 6-2.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-2

Symbolic Arguments of Function Control Directives

Argunment

Default

Function

ABS

AMA

CDR

CRF

FPT

LC

LSB

Disable

Disable

Disable

Enable

Disable

Disable

Disable

Enabling this function produces absolute
binary output in FILES~1l format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

Enabling this function causes all
relative addresses (address mode &7) to
be assembled as absolute addresses
{address mode 37). This function is
useful during the debugging phase of
program development.

Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers in card
columns 73-80.

Disabling this function inhibits the
generation of cross-reference output.
This function only has meaning if
cross-reference output generation is
specified in the command string.

Enabling this function causes floating-
point truncation: disabling this
function causes flecating-point rounding.

Enabling this function causes MACRO-11
to accept lower-case ASCII input instead
of converting it to upper-case. If this
function is not enabled, all text is
converted to upper-case.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until (1)
another .ENABL LSB 1is encountered, or
(2) another symbolic 1label or .PSECT
directive is encountered following a
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a local symbol block to cross
.PSECT boundaries, local symbols cannot
be defined 1in a program section other
than the one that was in effect when the
block was entered. The basic function
of this directive with regard to
.PSECT's 1is 1limited to those instances

{Continued on next page)

N

GERERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)

Symbolic Arguments of Function Control Directives

Argument

Default

Function

"

iy

LsSB

{Cont.)

PNC

REG

GBL

Disable

Enable

Enable

Enable*

When the

where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
{P) in the assembly listing.

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program; is shown in Figure 6-5.

Disabling this function inhibits binary
output until an .ENABL. PNC statement is
encountered within the same module.

When specified,; the .DSABL REG directive
inhibits the normal MACRO-11 default
register definitions; if not disabled,
the default definitions 1listed below
remain in effect. '

RO=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical consistency, use the normal
default register definitions listed
above.

.ENABL GBL directive is
specified, MACRO~1l treats -all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; . . when the .DSABL GBL

directive 1is specified, MACRO=1l treats
all such references as undefined
symbols. In assembly pass 2, if the

.DSABL GBL function is still in effect,
these undefined symbols are flagged with
an error code (U) in the assembly

listing; otherwise, they continue to be
regarded by MACRO-11 as global
references.

The default is Disable for RT-11 MACRO programs.

GENERAL ASSEMBLER DIRECTIVES

¢

AWNTIve ILVIIONTY

IAY3IT 0L HONVHE!

$6323n§ 3ILVIIANIL

H19N3T INIT FUANdWOI=3N!¢

L1 L6Yd INIOdm=y3LlOVHYKI YNVIB=NON!
11 3MON9T ‘0SS 41¢

IXNYIG ¥ LI SI¢

11 F8ON9] f08 414

L8YL ¥V ¥3ILIVMYKD LSV 3IML ST
38NTTv4 WiIm 3AVIT ‘08 41t

L3INIT 40 L¥viS 04 INIOd 2¥ €300t
INIT= 400N LEVd 2o INIOQdS

3009 $S323N8 NOWWO] ¥IA IA¥3N
INITe 400N M3N LSV 8 INIOd *834rf
gNINO0T INNILNOD ‘ONi

INOTY0JIWIS ¥ILIVHYMD LSV 3L 81t
JuNTIvd ONILVIIONI 3AVv3T ‘08 41t
LINTTY 40 iMYLE D) ANIOd fH €304Q¢
INIT NI H¥MD LISV LE¥d £N INIQDHE

£H NI 3NIT 40 800V indt

887

1 Y14

2u'ly

[4:]

L1

ELA AT ARYA-D
g8t
ayie’i2u)=
sac

tu2y

2u'ly

sae

2oty

: | 3
2IW3SH(EY) -
’ 1 119
147¢y

Cu'ly

I AAT]

881

18vsg’
NENL3Y
3138

48

312
4ns
INI
038
Bl
038
BdWd
o3s
dwl
aav

L]
AOW
3ng

8dWd
DEL]
L]
Qv
AQwW

18YNI"

is0v
tgec

1892

igel
1 %184 X8

is]

SIwSaN4

v 39v4d

eazeee

192008 9liged
igvoee vi2cpe
trzoee 2i2ced
zategt eleges
2a2gea eezgoe
geLlee pazoee
2rogepd (22121 wedged
g4elee 9Licoe
1i¢eee s22v2t 2Zsigee
Ziviee @Ligoe
182028 99i¢ed
2ete9d ¢9iged

Zivong 291Ced
égtole a9icen
£4C1006 9giged
L0000 (ZEv2l 2siged
2Zvine OslgeR
jecoze gvigee
weZese rericoe
£gleig 2Zrigee

€11GT pL=NT=60

LBLOW Q¥IVW

SOAT309ITQ TEYSA® DUR TaYNA® JO a7dwexdy G-9 oanbrg

zeg
leg
ge¢
662
862
{62
962
662
v6e
£62
262
i62
v6e
682
(114
82
§8e
582
8
£ee
t41°14
i8Z
28
642
84
LLe
9L2
1134
| 724
€42
2LE

3733n0S

6-16

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives, ASCII conversion characters, and radix-control
operators:

.BYTE
.WORD
]

"

+LASCII
ASCIZ

.RAD50

"B
“C
-
"0

-~

R

These MACRO-1l1 facilities are described in the following sections.

6.3.1 L.BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

.BYTE exp ;STORES THE BINARY VALUE OF THE
;EXPRESSION "EXP" IN THE NEXT BYTE.

.BYTE expl,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The
operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The 16-bit value of = the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (l). Each expression value
is stored in the next byte of the object module. Multiple
expressions, which must be separated . by commas, are stored in
successive bytes, as described below:

SAM=5
=410 ,
.BYTE "D48,8AM . ;THE VALUE 060 {OCTAL EQUIVALENT OF 48
;sDECIMAL} IS STORED IN LOCATION 4190.
;THE VALUE 005 IS STORED IN LOCATION
$411.

If the high-order byte of the expression reduces to a value other than
0 or -1, the wvalue 1is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing.

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix—-control operator. The
function of such special unary operators is described in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the linker

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the object module in question. For
example, the following statements create such a possibility:

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE.
A:
.BYTE A sRELOCATABLE VALUE A WILL PROBABLY
;CAUSE TRUNCATION
;DIAGNOSTIC.

If an expression following the .BYTE directive is null, it is
interpreted as a zero, as described below:

=420
.BYTE ree ;ZEROS ARE STORED IN BYTES 420, 421,
422, AND 423,

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null wvalues, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6.3.2 L.WORD Directive

The .WORD directive 1is used tou generate successive words of - data in
‘the object module. The directive is of the form:

.WORD exp ;STORES THE BINARY EQUIVALENT OF THE
;EXPRESSION EXP IN THE NEXT WORD.

.WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE
;LIST OF EXPRESSIONS IN SUCCESSIVE
; WORDS . :

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SaL=0
.=500
.WORD 177535, .+4,8AL ;STORES THE VALUES 177535, 506, AND
;0 IN WORDS 500, 502, AND 504,
;RESPECTIVELY.

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
. WORD ¢S5, ;STORES THE VALUES 0, 5, AND 0 IN
; LOCATION 500, 502, AND 504,
;RESPECTIVELY. :

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACRO-11 as a macro call, an instruction mnemonic, a
MACRO-11 directive, or a semicolon is interpreted during assembly as
an implicit .WORD directive, as shown in the example below:

.=440

LABEL: 100,LABEL ;STORES THE VALUE 100 IN LOCATION 440
' ;AND THE VALUE 440 IN LOCATION 442,

6-18

Py

~

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not use this technigue to
generate .WORD directives because it may
not be included in future PDP~11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACRO~1ll expression. When so used,
these characters cause a l16-bit expression value to be generated.

When the single guote- is used, MACRO-11l takes the next character in
the expression and converts it from its 7-bit ASCII value to a lé~-bit
expression value. The lé-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV #'A,RO

results in the following l6-bit: expression value being moved into
register O: ,

00000000/01000001

1~»Binary Value of ASCITI A

Thus, in the example above, the expression 'A results in a value of
101(8). Note -that the high-order byte is always zero (0) in the
resulting expression value when the single gquote unary operator is
used. f ,

The ' character must not be followed by a carriage-return, null,
RUBOUT, line-feed, or form—-feed charascter; if it is, an error code
(A) is generated in the assembly listing.

When the double quote is used, MACRO-11l takes the next two characters
in the 'expression and converts them to a 16~bit binary expression
value from their 7-bit ASCII wvalues. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,RO

results in the following 16-bit expression value being moved into
register 0:

01000010(01000001

! I~~Binary value of ASCII A

Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101 (8).

6-19

GENERAL ASSEMBLER DIRECTIVES

The " character also must not be followed by a carriage~return, null,
RUBOUT, 1line-feed, or form—~feed character; if it is, an error code
(A} is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.l, Appendix A.

6.3.4 L.ASCII Directive

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them in the object module. The format of
the .ASCII directive is as follows:

LASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. All
printable ASCII characters are legal. The
vertical-tab, null, line-feed, RUBOUT, and all
other non-printable ASCII characters, except

carriage~-return and form-feed, are illegal
characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing. The carriage-return and

form~feed characters terminate the scan of the
source line. This premature termination of the
.ASCII statement results in the generation of an
error code (A) in the assembly 1listing, because
MACRO-11 is unable to complete the scan of the
matching delimiter at the end of the character
string.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=}, the left angle bracket (<), or
the semicolon (;}, as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the JASCII directive 1is flagged with an
error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement only

by enclosing its equivalent octal value within angle brackets. Each

set of angle brackets so used represents a single character. For
example, in the following statement:

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see Section 6.3.1}).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

LASCII /ABC<expression>DEF/
contains a single ASCII character string, and performs no evaluation

of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

6-20

%

i
£

GENERAL ASSEMBLER DIRECTIVES

.ASCII /HELLO/ ; STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
; CONSECUTIVE BYTES.

.ASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
;RETURN,LINE FEED,D,E,F IN EIGHT
;CONSECUTIVE BYTES.

.ASCII = /A<K15>B/ ;STORES THE BINARY REPRESENTATION
;OF - THE. CHARACTERS A, <, 1, 5, >,
:AND B IN SIX CONSECUTIVE BYTES.

The semicolon (;) and equal sign (=) can be used as delimiting
characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment
operator, respectively, as illustrated in the examples below:

.ASCII - ;ABC;/DEF/ ;STORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F
;IN SIX CONSECUTIVE BYTES; NOT)
; RECOMMENDED PRACTICE.

.ASCII /ABC/;DEF; : STORES THE BINARY REPRESENTATIONS OF
; THE CHARACTERS A, B, AND C IN THREE
;CONSECUTIVE BYTES; THE CHARACTERS D,
;E, F, AND ; ARE TREATED AS A COMMENT.

.ASCII ' /ABC/=DEF= ;STORES THE BINARY REPRESENTATION
: ;OF THE CHARACTERS A, B, C, D, E, AND
:F IN SIX CONSECUTIVE BYTES; NOT
;s RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as
the first character in the ASCII string, as illustrated by the
following example:

,ASCI1 =DEF= : THE DIRECT ASSIGNMENT OPERATION
; JASCII=DEF IS PERFORMED, AND A ¢
5 (SYNTAX) ERROR IS GENERATED UPON
; ENCOUNTERING THE SECOND = SIGN.

6.3.5 .ASCIZ Directive

The .ASCIZ directive is equivalent to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15

LF=12

HELLO: .ASCIZ <CR><LF>/MACRO-11 VO1lA/<CR><LF> ;INTRODUCTORY MESSAGE
.EVEN
MOV #HELLO,R1 s+GET ADDRESS OF MESSAGE.
MOV #LINBUF,R2 ;GET ADDRESS OF OUTPUT BUFFER.

10%: MOVB (R1)+, (R2)+ ;MOVE A BYTE TO OUTPUT BUFFER.

BNE . 108 :IF NOT NULL, MOVE ANOTHER BYTE.

6-21

GENERAL ASSEMBLER DIRECTIVES

The .ASCIZ directive is subject to the same checks for character
legality and proper character string construction as described above
for the .ASCII directive.

6.3.6 LRAD5S0 Directive

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix~-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

-RAD50G /string 1/.../string n/

where: string represents a series of characters to be packed
{three characters per word). The string must
consist of the characters A through %Z, 0 through
9, dollar sign (S), period (.} and space { }. An
illegal printing character causes an error flag
{Q) to be printed in the assembly listing.

If fewer than three characters are to be packed,
the string 1is packed left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in Section
6.3.4, the vertical-tab, null, line-feed, RUBOUT,
and all other non-printing characters, except
carriage-return and form~-feed, are illegal
characters, resulting in an error code (I} in the
assembly 1listing. Similarly, the carriage-return
and form~feed characters result in an error code
(A) because these characters end the scan of the
line, preventing MACRO~11 from detecting the
terminating matching delimiter.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), provided that the delimiting
character 1is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character 1is
used, the .RAD50 directive 1is flagged with an
error code {(A) in the assembly listing.

Examples of .RAD50 directives are shown below:

.RAD50 /ABC/ ;PACKS ABC INTO ONE WORD.
.RAD50 /AB/ ;PACKS AB (SPACE} INTO ONE WORD.
.RAD50 /ABCD/ :PACKS ABC INTO FIRST WORD AND

;D (SPACE) (SPACE) INTO SECOND WORD.
.RAD5G /ABCDEF/ ; PACKS ABC INTO FIRST WORD, DEF INTO

s SECOND WORD.

ey

P

-

GENERAL ASSEMBLER DIRECTIVES

Each character 1is translated into its Radix-50 eqguivalent, as
indicated in the following table:

Character Radix~-50 Octal Equivalent
(space) 0

A-Z ' 1-32

$ ' 33

. o 34
(undefined) 35

0-9 36~47

The Radix-50 equivalents for characters -1 through 3 (C1,C2,C3) are
combined as follows: ;

Radix~-50 Value = ((C1*50)+C2)*50+C3
For example:
Radix-50 Value of ABC = ((1*50)+2)*50+3 = 3223

Refer to Section A.2 in Appendix A for a table of Radix-50
equivalents. : ‘

Angle brackets {<>) must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below: ’ i : SR b

.RAD50 /AB/<35> ;STORES 3255 IN ONE WORD.

CHR1=1
CHR2=2
CHR3=3

-

.RADS0 <CHRl><CHR2>(CHR3> ;EQUIVALENT’TO .RAD50 /ABC/.

6.3.7 Temporary Radix~50 Control Operator. "R

The "R operator spec;fles that an argument is to be converted to
Radix~50 format. This allows up to three characters to be stored in
one word. The - R operator is coded as follows*

"Rcece

where ccc represents a maximum of three characters to be converted to
a 16-bit Radix~50 value. If more than three characters are specified,
any following the third character are ignored. 1If fewer than 3 are
specified, it is assumed that the trailing characters are blanks. The
following example shows how the "R operator might be used to pack a
3-character file type specifier (MAC) into a single 1l6~bit word.

MOV # RMAC,FILEXT g :STORE RAD50 MAC AS FILE EXTENSION
The number sign (#) is used to indicate immediate data, i.e., data to
be assembled directly into object code. "R specifies that the

characters MAC are to be converted to Radxx*SO This wvalue is then
stored in location FILEXT.

6~23

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACRO~1l source program is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal value during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These
MACRO-11 facilities are described in the following sections.

NOTE

When two or more unary operators appear together,
modifying the same term, the operators are
applied, from right to left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO-1ll source program
are initially considered to be octal values; however, you can declare
any one of the following radices for applicability throughout the
source program or within specific portions of the program:

2, 8, 10
This is accomplished via a .RADIX directive of the form:
.RADIX n

where: n represents one of the three acceptable radices
listed above. If the argument n is not specified,
the octal default radix is assumed.

The argument in the .RADIX directive 1is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10 sBEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

.RADIX s REVERTS TO OCTAL RADIX.

Any value other than null, 2, 8, or 10 specified as an argument in the
.RADIX directive causes an error code (A} to be generated in the
assembly listing.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or in
possible future uses of that code, it is recommended that the user

6-24

P

AP

sy,

GENERAL ASSEMBLER DIRECTIVES

specify numeric or expression values using the temporary radix control
operators described below.

6.4.1.2 Temporary Radix Control Operators: "D, "0, and "B - Once the

user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACRO-11 has three unary operators that allow the user to establish an
alternate radxx, as shown below:

"D*number® ("number” is evaluated as a decimal number)
O"number" ("number® is evaluated as an octal number)
"B*number" {"number® is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized reguirement in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expressxon immediately following the operator.
Any value spec;fled in connection with a temporary radix control
operator is evaluated during assembly as a 1l6-bit entity. Temporary
radix control declarations can be included in the source program
anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

"D123 Decimal radix
“0 47 Octal Radix
"B 00001101 Binary Radix
TO<Aa+13> Octal Radix

Note that the up~arrow and the radix c¢ontrecl operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:

.RADIX 10

A=10
.WORD TO<A+10>*%10

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following eguivalent statement:

.WORD 180.

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.); as shown below:

100.\ Equivalent to 144(8)
1376.: Equivalent to 2540(8)

128. Equivalent to 200(8)

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those 1listed
below:

“D100
"D1376
"D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating~point hardware on the PDP-11.
These facilities allow floating-point data to be created in the
program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0EQ
3EC
.3E1
300E-2

As can be inferred, the list could be extended indefinitely (e.g.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. No other operators are allowed (e.g., 3.0+N is illegal).

All fleating~paint numbers are evaluated as 64 bits in the féllowing
format: ,

64 63 56 55 0

s EEEEEEEE MMM.MMM
Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO-11 returns a value of the appropriate size and precision via one
of the floating-point directives. The wvalues returned may be
truncated or rounded (see Section 6.2).

Floating-point numbers are normally rounded. That is, when a
floating~point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the

6-26

e

e,
s

GENERAL ASSEMBLER DIRECTIVES

unretained field is added to the least significant bit (0) of the
retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT is used to
return to floating-point rounding (see Table &-2).

Bit Bit Bit Bit
32 0 32 31 0

Retained | Unretéined
field field

Note that all numeric operands - associated with Floating Point
Processor instructions are automatically evaluated as single-word,
decimal, floating-point values unless a temporary radix control
operator is specified. For example, to add (floating) the octal
constant 41040 to the contents of floating accumulator zerc, the
following instruction must be used:

ADDF $7041040,F0
where: FO0 is assumed to represent floating accumulator zero.

Floating~point numbers are ﬂescribéd; inlfgreater detail in the
applicable PDP-11 Processor Handbook.

6.4.2.2 Temporary Numeric Control Operators: “C and “F - The °C
unary op@rater allows you to spemlfy an - argument that is to be
complementeﬁ as it 1is evaluated during assembly. The °“F unary
operator allows you to specify an argumeﬁt consisting of a l-word
floating-point nﬁmbez‘ e : ’

As with the radix ccntrel operators . deSctlbed abave, the numeric
control operator ("Cy can be used anywhere in the source program that
an expression value is legal. Such a 'construction ig evaluated by
MACRO-11 as a 16-bit binary value before being complemented. For
example, the following statement:

TAG4: .WORD "C151
cauges the 1l's cnmplemant of the value 151 (octal) to be stored as a

16-bit wvalue in the program. The resulting value expressed in octal
form is 177626(8).

GENERAL ASSEMBLER DIRECTIVES

Because the "C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

"C"D25

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed in octal form, reduces to
177746 {octal). ’

The term created through the use of the temporary numeric control
operator thus becomes an entity that can be used alone or in
combination with other expression elements. For example, the
following construction:

“C2+6

is equivalent in function to:
<"C2>+6

This expression is evaluated during assembly as the 1's complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are c¢oded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

MACRO-11 also supports a unary operator for numeric control which
allows you to specify an argument consisting of a l-word
floating-point number. For example, the following statement:

A: MOV #"F3.7,RO

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 _ 14 7 6 0

S EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

6-28

*r

A

F

GENERAL ASSEMBLER DIRECTIVES

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

In this connection, it should be noted that several MACRO-11
statements may cause an odd number of bytes to be allocated, as listed
below:

1. .BYTE directive

2, .BLKB directive

3. .ASCII or .ASCIZ directive
4. .ODD directive

5. A direct assignment statement of the form .=.texpression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

€.5.1 L.EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by addlng 1 if the current value is odd. If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZz /THIS IS A TEST/

.EVEN ;ENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY.

.WORD XYZ

6.5.2 .0ODD Directive

The .0ODD directive ensures that the current location counter contains
an odd value by aédlng 1 if the current value is even. 1If the current
location counter is already odd, no action 1is taken. Any operands
following an .ODD directive are also flagged with an error code {Q) in
the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLEW Directives

Blocks of storage can be reserved in the object program by means of
the .BLKB and .BLKW directives. The .BLKB directive is used to
reserve byte blocks; similarly, the ,BLKW directive reserves word
blocks. The two directives are of the form:

.BLKB exp
.BLKW exp

where: exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of 1 |is
assumed. These directives should not be used
without arguments. Any expression that is
completely defined at assembly-time and that
reduces to an absolute value 1is legal. If the
expression specified in either of these directives
is not an absolute value, the statement is flagged
with an error code (A) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166 Goeede JPSECT IMPURE,D

167 Gaeee0 PASSE: L BLKW 1 ~ JPASS FLAG

168 INEXT GROUP MUSTY STAY TOGETHER
169 paReR0 JPSECT IMPPAS,D,GBL

178 280080 SYMBOL ¢ ,BLKwW 2 PEYMBOL ACCUMULATOR

171 popnnd MODE s ¢ IMODE/FLAGS BYTE

172 dgoeRs FLAGS1?: ,BLKB i }

173 200005 SECYORgs ,BLKB 1 JSYMBOL/EXPRESSION TYPE

174 230006 VALUEE: BLKw i TEXPRESSION VALUE

175 vgooio RELLVLES BLKW 1 JIRELOCATION LEVEL

176 23002 +REPT MAXXMTwae =SYMBOL>»/2>

177 o BLKW 1

178 +ENDR

179

180 000020 CLCNAMI: BLKW 2 JCURRENT LOCATION COUNTER NAME
181 20B824 CLCFGS11,BLKB H H

182 @ovn2s CLCSEC11,BLKB i §

183 gaen2é CLCLOCE: ,BLKW H H

i84 QAQB030 CLCMAX g1 ,BLKW 1 JEND OF GROUPED DATA

185 @aee32 CHRPNTI! ,BLKw { JCHARACTER POINTER

186 oopPR34 SYMBEGE1 ,BLKW i FPOINTER 7O ATART OF SYMBOL
187 - 200036 ENDFLGIS BLKW i H

{88 @pQ000 JPSECTY

Figure 6~6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression
which causes the value of the expression to be added to the current
value of the 1location counter. The .BLKB directive, however, is

easier to interpret in the context of the source code in which it
appears and is therefore recommended.

30

o
i

AR

Fa

Pt

GENERAL ASSEMBLER DIRECTIVES

6.6 TERMINATING DIRECTIVES

6.6.1 .END Directive

The .END directive indicates the logical end of the source input, and
takes the following form: ,

.END exp

where: T exp represents an optional expression value which, 1if
present, indicates the program—entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any additional text beyond this
point in the current source file, as well as in additional source
files identified in the command line, will be ignored.

When creating an image consisting of several object modules, only one
ocbject module may be terminated with an .END exp statement specifying
the starting address. All other object modules must be terminated
with an L.END statement without an address argument; otherwise, a
diagnostic message will be issued at 1link time. If no starting
address is specified in any of the object modules, image execution
will begin at location 1 of the image and immediately fault because of
an odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (O} in the assembly listing. The .END statement may be
used, however, in an immediate conditional statement (see Section
6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 .EOT Directive

Under RSX-1l, RT-~11, and IAS operating systems, the MACRO-11 .EOT
directive is ignored and simply treated as a directive without effect,
i.e., as a no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries
of the image. When the .LIMIT directive is specified in the source
program, MACRC-11 effectively generates the following instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at 1link time, the lowest address in the load image is inserted into
the first reserved word, and the address of the first free word
following the image is inserted into the second reserved word.

During linking, the size of the image is rounded upward to the nearest
2-word boundary.

GENERAL ASSEMBLER DIRECTIVES

For a discussion of memory allocation and mapping, refer to the
applicable system manual (see Section 0.3 in the Preface).

6.8 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections and to establish certain program section
attributes essential to the linking processing.

6.8.1 LJ.PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at link time, because any program attributes
established through this directive are passed to the linker.

For example, if you are writing programs for a multi-user environment,
a program section containing pure code [(instructions only) or a
program section containing impure code (data and instructions) may be
explicitly declared through the .PSECT directive. Furthermore, these
program sections may be explicitly declared as read-only code,
qualifying them for use as protected, reentrant prograns.

The advantages gained through sectioning programs in this manner
therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable system manual for a discussion of memory allocation (see
Section 0.3 in the Preface}.

The .PSECT directive is formatted as follows:

.PSECT name,argl,arg?,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-3.
¢ represents any legal separator (comma, tab - and/or
space) .
argl, represent one or more of the 1legal symbolic
arg2,... arguments defined for use with the .PSECT
argn directive, as described in Table 6-3. The slash

separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing.

6-32

J

,,.w,
wyﬂ!

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

NAME

RO/RW

1/D

GBL/LCL

Blank

RW

LCL

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in place
of the name parameter. The Radix-50
character set 1is listed in Section A&.2
of Appendix A.

Defines which type of access is
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

IAS and RSX-11D set hardware
protection for RO program
sections. RSX-11M and RT-11 do
not provide such protection.

Defines the program section as
containing either instructions (I} or
data (D). These attributes allow the
linker to differentiate global symbols
that are program entry-point
instructions (I) from those that are
data values (D).

Defines the scope of the program
section, as subseguently interpreted at
link time.

In building single-segment nonoverlaid
programs, the GBL/LCL arguments have no
meaning, because the total memory
allocation for the program will go into
the root segment of the image. The
GBL/LCL arguments apply only in the case
of overlays.

If an object module contains a local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

(continued on next page)

6-33

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

GBL/LCL
(cont'd)

ABS/REL

LCL

REL

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries,
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. (The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program section is regarded at 1link
time as an absolute module, thus
requiring no relocation. The
program section is assembled and
loaded, starting at absclute virtual
address 0.

The location of data in absolute
program sections must fall within
the virtual memory limits of the
segment containing the program
section; otherwise, an error
results at link time. For example,
the following code, although wvalid
at during assembly, may generate an
error message if wvirtual location
100000 is outside the segment's
virtual address space:

.PSECT ALPHA,ABS
.=,+100000
.WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. In such cases, the
linker recognizes this as an attempt
to load data outside the image and
responds with an error message.

REL=Relocatable. When the REL
argument is specified, the linker
calculates a relocation bias and
adds it to all references to

locations within the program
section, i.e., all references to the
program section must have a

relocation bias added to them to
make them absoclute.

{Continued on next page)

6~-34

“'”’(@E
o

g

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of
the program section:

CON=Concatenated. All program section
contributions are to be concatenated
with other references to this same
program section in order to
determine - the total memory
allocation requirement for this
program section. :

OVR=Overlaid. All program section
contributions are to ‘be overlaid,
Thus, the total allocation

requirement for the program section.
is equal to the largest allocation
request made by any individual
contribution to this program
section.

The only argument in the .PSECT directive that is position—-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:
.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default wvalues (see Table 6-3) are assumed for all other
unspecified arguments.
Once the attributes of a program section are declared through a .PSECT
directive, MACRO-11l assumes that these attributes remain in effect for
all subsequent ,PSECT directives of the same name that are encountered
within the module. '
MACRO~-11 provides for 256(10) program sections, as listed below:

1. One default absolute program section (. ABS.)

2. One default unnamed relocatable program section

3. Two-hundred-fifty—-four named program sections.
The .PSECT directive enables the user to:

1. Create program sections (see Section 6.8.1.1)

2. Share code and data among program sections (see Section
6.8,1.2).

6-35

GENERAL ASSEMBLER DIRECTIVES

For each program section specified or implied, MACRO~1l maintains the
following information:

1. Program section name
2. Contents of the current location counter
3. Maximum location counter value encountered

4. Program section attributes, i.e., the .PSECT arguments
described in Table 6-3 above.

6.8.1.1 Creating Program Sections - MACRO~11 automatically begins
assembling source statements at relocatable zero of the unnamed
program section, i.e., the first statement of a source program is
always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the
resumption of assembly where that section previously ended. For
example:

.PSECT ;DECLARES UNNAMED RELOCATABLE PROGRAM
A: .WORD 0 sSECTION ASSEMBLED AT RELOCATABLE
B: . WORD 0 ;ADDRESSES 0, 2, AND 4.
C: .WORD 0

.PSECT ALPHA sDECLARES RELOCATABLE PROGRAM SECTION
X: .WORD 0 ;NAMED ALPHA ASSEMBLED AT RELOCATABLE
Y: .WORD 0 :ADDRESSES 0 AND 2.

.PSECT ;RETURNS TO UNNAMED RELOCATABLE
D: .WORD 0 s PROGRAM SECTION AND CONTINUES ASSEM-

;BLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR
and later referenced through the equivalent directive:
.PSECT ALPHA
which requires no arguments.
By maintaining separate location counters for each program section,
MACRO-11 allows the user to write statements that are not physically

contiguous within the program, but that c¢an be loaded contiguously
following assembly, as shown in the following example.

P

GENERAL ASSEMBLER DIRECTIVES

.PSECT SECl,REL,RO ;START A RELOCATABLE PROGRAM SECTION
A: .WORD O ;NAMED SEC1 ASSEMBLED AT RELOCATABLE
B: +WORD 0 yADDRESSES 0, 2, AND 4.
C: .WORD 0 , :
ST: CLR A sASSEMBLE CODE AT RELOCATABLE
CLR B ;ADDRESSES 6 THROUGH 12.
CLR C
.PSECT SECA,ABS ;START AN ABSOLUTE PROGRAM SECTION
sNAMED SECA. ASSEMBLE CODE AT
«WORD .+2,A ;ABSOLUTE ADDRESSES 0 AND 2.
.PSECT SECl ;RESUME RELOCATABLE PROGRAM SECTION
INC A ;SECl. ASSEMBLE CODE AT RELOCATABLE
BR ST ;ADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced in
a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the wvalue of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

It is not known during assembly where relocatable program sections
will be loaded, therefore all references between relocatable sections
in a single assembly are translated by MACRO-11 to references relative
to the base of the referenced section. Thus, MACRO-11l provides the
linker with the necessary information to resolve the linkages between
various program sections. Such information is not necessary, however,
when referencing an absolute program section, because all instructions
in an absolute program section are associated with an absolute virtual
address.

In the following example, references to the symbols X and - Y are
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT - ENT,ABS

.=.+1000
A: CLR X ;ASSEMBLED AS CLR BASE -OF
;RELOCATABLE SECTION + 10.
JMP ' ;ASSEMBLED AS JMP BASE OF
;RELOCATABLE SECTION + 6.
.PSECT SEN,REL
MOV RO,R1
JMP A ;ASSEMBLED AS JMP 1000.
Y: HALT
X: .WORD 0

NOTE

In the preceding example, using a constant in conjunction
with the current location counter symbol (.) in the form
.=1000 would result in an error, because constants are
always absolute and are always associated with the program's
.ASECT (. ABS.). 1If the form .=1000 were wused, a program
section incompatibility would be detected. See Section 3.6
for a discussion of the current location counter.

6-37

GENERAL ASSEMBLER DIRECTIVES

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, i.e., program sections of the same name with the arguments GBL
and OVR from different assemblies are all loaded at the same location
at link time. All other program sections, i.e., those with the
argument CON, are concatenated.

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name 1is necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This allows
you to place odd length data at the end of a module. However, when
several modules contain object code contributions to the same program
section having the concatenate attribute (see Table 6-3), odd length
modules (except the last) may cause succeeding modules to be linked
starting at odd locations, thereby making the linked program
unexecutable. To avoid this problem, code and data should be
separated from each other and be placed in separately named program
sections. This permits the linker to automatically begin each program
section on an even address. Refer to the applicable system manual for
further information on memory allocation of tasks (see Section 0.3 in
the Preface).

6.8.2 LASECT and .CSECT Directives

IAS and RSX-11l assembly-language programs use the .PSECT and .ASECT
directives exclusively, since the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were .PSECT directives with the
default attributes 1listed in Table 6-4. Also, compatibility exists
between other MACRO-1l1l programs and the IAS/RSX-11 Task Builders,
since the respective Task Builders recognize the .ASECT and .CSECT
directives that appear 1in such programs and likewise assign the
default values listed in Table 6-4.

GENERAL ASSEMBLER DIRECTIVES

Table 6-4
Non-IAS/RSX-11 Program Section Default Values
Default Value

Attribute JASECT k.CSECT {named) .CSECT {unnamed}
Name . ABS. name Blank
Access RW RW RwW
Type I I I
Scope ' GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

The allowable syntactical forms of the .ASECT and .CSECT directives
are: ‘

.ASECT
.CSECT
.CSECT 'symbol

Note that the statement:
.CSECT JIM

is identical to the statement:
.PSECT JIM,GBL,0OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO~-11 produces a relocatable object module and a listing file
containing the assembly 1listing and symbol table. The linker joins
separately-assembled object modules into a single executable image.
During 1linking, object modules are relocated as a program function of
the specified base of the module. The object modules are then linked
via global symbols, such that a global symbol in one module, defined
either by a global assignment operator (==), a global label operator
{::), or the .GLOBL directive can be referenced from another module.
Thus, all symbols which will be referenced by other program modules
must be singled out as global symbols in the defining modules.

The .GLOBL directive is provided to define (and thus provide linkage
to) - symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see Section
6.2), .GLOBL directives might be ‘included 1in a source program to
effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is eguivalent to:

==expression {or A
B==expression {or B
==gxpression (or C

e 2e s
¥ se s

}
}
}

6-39

GENERAL ASSEMBLER DIRECTIVES

Thus, the general form of the .GLOBL directive is:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator ({(comma, space, and/or tab).

A .GLOBL directive may also embody a 1label field and/or a comment
field.

At the end of assembly pass 1, MACRO-1ll determines whether a given
global symbol is defined within the current program module or whether
it is to be treated as an external symbol. All internal symbols
appearing within a given program must be defined at the end of
assembly pass 1 or they will be assumed to be default global
references. Refer to Section 6.2 for a description of
enabling/disabling of global references.

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol by means of the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label by means of the double colon (::). Since the symbol C is not
defined as a label within the current assembly, it 1is an external
{(global) reference if .ENABL GBL is in effect.

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

we we we we

.PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.
.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.
Az MOV @(R5)+,R0 ;DEFINE ENTRY POINT A.
MOV #X,R1
X JSR PC,C ;CALL EXTERNAL SUBROUTINE C.
RTS R5 sEXIT.
B:: MOV (R5)+,R1 ;DEFINE ENTRY POINT B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR @EXT

External symbols may also appear as a term within an expression, as
shown below: :

CLR EXT+A
.WORD EXT-2
CLR @EXT+A (R1)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see Sections 6.10.1 and 6.10.3).

E!

7

GENERAL ASSEMBLER DIRECTIVES

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of

stated condition

tests within the body of the program. This

capability allows several variations of a program to be generated from
the same source code.

6.10.1 Conditional Assembly Block Directives: .IF, .ENDC

The general form of a conditional assembly block is as follows:

where:

argument (s}

.IF

range

.ENDC

cond,argument (s) ;START CONDITIONAL ASSEMBLY BLOCK.

;RANGE OF CONDITIONAL ASSEMBLY BLOCK.

;END OF CONDITIONAL ASSEMBLY BLOCK.

represents a specified condition that must be met
if the block is to be included in the assembly.
The conditions that may be tested by the
conditional assembly directives are defined in
Table 6-5. :

represents any legal separator (comma, space,
and/or tab).

represent {s) the symbolic argument (s} or
expression(s) of the specified conditional test.
These arguments -are thus a function of the
specified condition to be tested (see Table 6-5).

represents the body of code that is either
included in the -assembly or excluded, depending
upon whether the specified condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-5, an illegal
argument, or-a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-5
Legal Condition Tests for Conditional Assembly Directives
Conditions
Positive | Complement Arguments Assemble Block If:
EQ NE Expression Expression is equal to 0
{or not egqual to 0}.
GT LE Expression Expression is greater
than 0 (or less than or
egqual to 0).

6-41

GENERAL ASSEMBLER DIRECTIVES

Table 6-5 (Cont.)

Legal Condition Tests for Conditional Assembly Directives

AT

Conditions
Positive | Complement Arguments Assemble Block If:
LT GE Expression Expression is less than 0
{or greater than or equal
to 0).
DF NDF Symbolic Symbol is defined {or not
argument defined).
B NB Macro-type Argument is blank {or
argument non-blank).
IDN DIF Two macro-type Arguments are identical
arguments {(or different).
yA NZ Expression Same as EQ/NE.
G L Expression Same as GT/LT.
NOTE

A macro-~type argument (which is a form of symbolic
argument), as shown below, ‘is enclosed within
angle brackets or denoted with an up-arrow
construction (as described in Section 7.3.1).

<A,B,C>
“/124/
An example of a conditional assembly directive follows:

.IF EQ ALPHA+]

;ASSEMBLE BLOCK IF ALPHA+1=0.
. ENDC

The two operators & and ! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator
! Logical inclusive OR operator
For example, the conditional assembly statement:

.IF DF SYM1l & SYM2

. ENDC

results in the assembly of the conditional block if the symbols SYM1
and SYM2 are both defined.

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC
.ENDC

For example, the following conditional directives:

.IF DF SYM1
+IF DF SYMZ2

.

.

. ENDC
.ENDC

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An- .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO~11 permits a neéting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (0O) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

l. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail in Table 6-6.

If a subconditional directive appears outside a conditional assembly
block, an error code {0} is generated in the assembly listing.

6-43

GENERAL ASSEMBLER DIRECTIVES

Table 6~6
Subconditional Assembly Block Directives

Subconditional
Directive Function

.IFF If the condition tested upon entering the
conditional assembly block 1is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

LIFT If the condition tested upon entering the
conditional assembly block 1is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, 1is
to be included in the program.

IFTF The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

The implied argument of a subconditional directive 1is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM ;TESTS TRUE, SYM IS DEFINED. ASSEMBLE
) :THE FOLLOWING CODE.

.IFF ;TESTS FALSE. SYM IS DEFINED. DO NOT
; :ASSEMBLE THE FOLLOWING CODE.

.IFT sTESTS TRUE. SYM IS DEFINED. ASSEM-
) :BLE THE FOLLOWING CODE.

.IFTF ;ASSEMBLE FOLLOWING CODE UNCONDITION-
5 sALLY.

.IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-
5 :BLE REMAINDER OF CONDITIONAL ASSEM~-
) {BLY BLOCK.

.ENDC

gy

#

EXAMPLE

EXAMPLE

EXAMPLE

GENERAL ASSEMBLER DIRECTIVES

2: Assume that symbol X is defined and that symbol Y is not

defined.
.IF DF X +TESTS TRUE, SYMBOL X IS DEFINED,
.IF DF Y s TESTS FALSE, SYMBOL Y IS NOT DEFINED.
.IFF sTESTS TRUE, SYMBOL Y IS NOT DEFINED,
. sASSEMBLE THE FOLLOWING CODE.
IFT s TESTS FALSE, SYMBOL Y IS NOT DEFINED.
. :DO NOT ASSEMBLE THE FOLLOWING CODRE.
.ENDC
. ENDC

3: Assume that symbol A is defined and that symbol B is not

defined.

.IF DF A ;TESTS TRUE. A I8 DEFINED.
;ASSEMBLE THE PFOLLOWING CODE.

MOV A,R1

.IFF ;TESTS FALSE. A IS DEFINED. DO NOT
:ASSEMBLE THE FOLLOWING CODE.

MOV R1,R0

.IF NDF B ;NESTED CONDITIONAL DIRECTIVE IS NOT

. sEVALUATED.
.ENDC
.ENDC

4: Assume that symbol X is not defined and that symbol Y is

defined.
.IF DF X s TESTS FALSE. SYMBOL X IS NOT DEFINED.
+DO NOT ASSEMBLE THE FOLLOWING CODE.

IF DF Y sNESTED CONDITIONAL DIRECTIVE IS NOT
. s EVALUATED.

.IFF sNESTED SUBCONDITIONAL DIRECTIVE IS
. ;NOT EVALUATED.

LIFT ;NESTED SUBCONDITIONAL DIRECTIVE IS
. :NOT EVALUATED.

. ENDC

.ENDC

GENERAL ASSEMBLER DIRECTIVES

6.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for
writing a l-line conditional assembly block. 1In using this directive,
no terminating .ENDC statement is required, and the c¢ondition to be
teated is completely expressed within the line containing the
directive. Immediate conditional assembly directives are of the form:

LIIF cond,arg,statement

where: cond represents one of the legal condition tests
defined for conditional assembly blocks in Table

6~-5.
' represents any legal separator (comma, space,

' and/or tab).

arg represents the argument associated with the
immediate conditional directive, i.e., an

expression, symbolic argument, or macro~type
argument, as described in Table 6-5.

’ represents the separator between the c¢onditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be used; otherwise, a comma, space, and/or
tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

For example, the immediate conditional statement:

LIIF DF FOO,BEQ ALPHA
generates the code

BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in
Table 6-5, an 1illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing.
6.10.4 PAL-11lR Conditional Assembly Directives
In order to maintain compatibility with programs developed under
PAL-11R, the following conditionals remain permissible under MACRO-11.

It is advisable, however, to develop future programs using the format
for MACRO-11 conditional assembly directives.

Directive Arguments Assemble Block if
.IF%Z or .IFEQ expression expression=0
.IFNZ or .IFNE expression expression not equal €
.IFPL or .IFLT expression expression<0
.IFG or .IFGT expression expression>Q
.IFLE expression expression is < or =0
.IFDF symbolic argument symbol is defined
.IFNDF symbolic argument symbol is undefined

The rules governing these directives are the same as for the MACRO-1l
conditional assembly directives previously described.

6-46

)

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable
to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding segquence
is first establighed with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a 1list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.1 .MACRQ Directive

The first statement of a macro definltlon must be a .MACRO directive.
This directive takes the form:

label: +MACRO name, dummy argument list
where: label represents an optional statement label.
name represents the programmer—assigned symbolic name

of the macro. This name may be any legal symbol
and may be used as a label elsewhere in the
program.

! represents any legal separator (comma, space,
and/or tab).

dummy represents a number of legal symbols (see 3.2.2)
argument that may appear anywhere in the body of the macro
list definition, even as a label. These dummy symbols

can be used elsewhere in the - program with no
conflict of definition. Multiple dummy arguments
specified in this directive may be separated by
any legal separator. The detection of a duplicate
or an illegal symbol in a dummy argument list
terminates the scan and causes an error code to be
generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

.MACRG ABS A,B ;DEFINES MACRO ABS WITH TWO ARGUMENTS.

MACRO DIRECTIVES

NOTE

Although it is legal for a label to appear on a
-MACRO directive, this practice is discouraged,
especially in the case of nested macro
definitions, because 1invalid labels or 1labels
constructed with the concatenation character will
cause the macro directive to be ignored. This may
result in improper termination of the macro
definition. This NOTE also applied to .IRP,
.IRPC, and .REPT.

7.1.2 .ENDM Directive

The final statement of every macro definition must be an .ENDM
directive of the form:

.ENDM name

where: name represents an optional argument specifying the
symbolic name of the macro being terminated by the
directive, as shown in the following example:

.ENDM ; TERMINATES THE CURRENT
sMACRO DEFINITION.

.ENDM ABS ;TERMINATES THE CURRENT
sMACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly 1listing

(see Appendix D). In either case, the current macro definition is
terminated. Specifying the macro name in the .ENDM statement thus
permits MACRO-11 to detect missing .ENDM statements or

improperly-nested macro definitions.

The .ENDM directive may be followed by a comment field, but must not
contain a label, as shown below:

.MACRO TYPMSG MESSGE ;TYPE A MESSAGE.

JSR R5,TYPMSG
.WORD MESSGE
. ENDM ;END OF TYPMSG MACRO.

An .ENDM statement encountered by MACRO-11 outside a macro definition
is flagged with an error code {0) in the assembly listing (see
Appendix D).

NOTES

1. Labels on .ENDM directives are ignored.

2. Illegal labels will cause the directive
to be bypassed.

i

ke

MACRC DIRECTIVES

7.1.3 .MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal

"within repeat blocks (see Sections 7.6 and 7.7). It is most useful in

the context of nested macros. The .MEXIT directive terminates the
current macro as though an .ENDM directive had been encountered.
Using the .MEXIT directive bypasses the complexities of nested
conditional directives and alternate assembly paths, as shown in the
following example:

.MACRO ALTR N,A,B

LIF EQ N sSTART CONDITIONAL ASSEMBLY BLOCK.
+MEXIT ;TERMINATE MACRO EXPANSION.

.ENDC ;END CONDITIONAL ASSEMBLY BLOCK.
.ENDM ;NORMAL END OF MACRO.

Considering the above macro, in an assembly where the real argument
for the dummy symbol N is equal to =zero (see Table 6-53), the
conditional block would be assembled, and the macro expansion would be
terminated by the .MEXIT directive. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition 1is flagged
with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is specified within a macro
definition, it is ignored during the assembly of the macro definition,
but a page eject is performed when that macro is expanded.

7.2 CALLING MACROS

A macro definition must be established by means of the .(MACRO
directive (see Section 7.1.1) before the macro can be expanded within
the source program. Macro calls are of the general form:

label: name real arguments
where: label represents an optional statement label.
name represents the name of the macro, as specified in

the .MACRO directive (see Section 7.1.1).

MACRO DIRECTIVES

real represent symbolic arguments which replace
arguments the dummy arguments specified in the .MACRO
directive. When multiple arguments are specified,
they are separated by any legal separator.
Arguments to the macro call are treated as
character strings whose usage is determined by the
macro definition. Note that MACRO-11l accepts the
ASCII value of lower—-case alphabetic characters
when .ENABL LC has been specified.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO} ,R1 ;ABS IS DEFINED AS A LABEL.
BR ABS ;ABS IS CONSIDERED TO BE A LABEL.
ABS #4 ,ENT,LAR ;ABS IS A MACRO CALL,

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

.

REN ALPHA,BETA,<C1,C2>

Arguments which themselves c¢ontain separating characters must be
enclosed in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,Y>,#44,WEV.
causes the entire expression
MOV X,Y
to replace all occurrences of the symbol A in the macro definition.

Real arquments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

£

o

P

MACRO DIRECTIVES

The up-arrow (°) construction is provided to allow angle brackets to
be passed as part of the argument. This construction, for example,
could have been used in the above macro call, as follows:

REN “/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument.

The following macro call:
REN #44,WEV”~/MOV X,¥/

however, contains only two arguments (#44 and WEV /MOV X,Y/), because
the up-arrow is a unary operator (see Section 3.1.3) and it is not
preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7.3.1 Macro Nesting

The nesting of macros, where the expansion of one macro ~includes a
call to another, causes one set of angle brackets in the macro
definition to be removed from an argument with each nested call. The
depth of nesting allowed is dependent upon the amount of dynanmic
memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, the argument in the macro definition should be enclosed within
one set of angle brackets for each level of nesting, as shown in the
coding sequence below. It should be noted that this extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVEL1l DUM1,DUNM2
LEVELZ <DUM1>
LEVEL2 <DUM2>

.ENDM

.MACRO LEVELZ DUM3
DumM3

ADD $10,R0

MOV RO, (R1) +
+ENDM :

A ¢all to the LEVELl macro, as shown below, for example:
LEVELL <MOV X,R0>, <MOV R2,RO>

¢auses the following macro expansion to occur:

MOV X,R0

ADD $#10,R0
MOV RO, (R1)+
MOV R2,R0
ADD $10,RU
MOV RO, (R1)+

MACRO DIRECTIVES

When macro definitions are nested, i.e., when a macro definition is
contained entirely within the definition of another macro, the inner

definition is not a callable macro until the outer macro has been.

called and expanded. For example, in the following coding:

.MACROC LV1 A,B

»

.MACRO LVZ C

»

. ENDM
. ENDM

the LVZ macro cannot be called and expanded until the LV1 macro has
been so0 invoked. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

An argument may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

.MACRO PUSH ARG
MOV ARG, - (SP)
.ENDM

PUSH X+3(%2)
causes the following code to be generated:

MOV X+3(%2),-(SP)

7.3.3 Passing Numeric Arguments as Symbols

When macro arguments are passed, an absolute symbol value can be
passed which is treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a numeric
value in the current program radix. The ASCII characters representing
this value are inserted in the macro expansion, and their function is
defined in the context of the resulting code, as shown in the
following example:

.MACRO INC A,B

CON A,\B ;B IS TREATED AS A NUMBER IN CURRENT
B=B+1 ;PROGRAM RADIX.
.ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B IS DESCRIBED IN SECTION 7.3.6.
. ENDM
C=0 INC X,C

fﬁ%

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:
X0 .WORD 4

Note in this expanded code that the label X0: is the result of the
concatenation of two real arguments. The single quote (') character
in the 1label A'B: causes the real arguments X and 0 to be
concatenated as they are passed during the expansion of the macro.
This type of argument construction is described in further detail in
Section 7.3.6.

A subseguent call to the same macro would generate the following code:
X1l: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B {(i.e., C} cannot
be updated in the CON macro definition, because its numeric value has
already been substituted for its symbolic name, i.e., the character 0
has replaced C in the argument string. In the CON macro definition,
the number passed is treated as a string argument. {Where the value
of the real argument is 0, only a single 0 character is passed to the
macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES
.IDENT /VO5A'SYM/ ;ON A UNIQUE 2-DIGIT VALUE.
.ENDM ;WHERE VO5A IS THE UPDATE

. ;VERSION OF THE PROGRAM.
IDT \ID

The above macro call would then expand to:
.IDENT /V05A6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than in the macro
definition, an error code {Q) is generated in the assembly listing.
If fewer arguments appear in the macro «c¢all than in the macro
definition, missing arguments are assumed to be null values. The
conditional directives .IF B and .IF NB (see Table 6-5) can be used
within the macro to detect missing arguments. The number of arguments
can also be specified using the .NARG directive {Section 7.4.1). Note
that a macro can be defined with no arguments.

7.3.5 Creating7Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, such a label must be explicitly

7-17

MACRO DIRECTIVES

specified as an argument with each macro call. Be careful in issuing
subseguent calls to the same macro, to avoid specifying a duplicate
label as a real argument. This concern ¢an be eliminated through a
feature of MACRO-11 which creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11 c¢an automatically create local
symbols of the form n$, where n is a decimal integer within the range
64 through 127, inclusive. Such local symbols are created by MACRO-11
in numerical order, as shown below:

© 648
65%

-

.

1268
1278

This automatic facility is invoked on each <c¢all of a macro whose
definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;s CONTAINS DUMMY ARGUMENT B PRECEDED BY
sQUESTION MARK.
ST A
BEQ B
ADD #5,A
B:
.ENDM

A local symbol is generated automatically by MACRO-11 only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA macro
defined above.

If the real argument is specified in the macro call, however, MACRO-11
inhibits the generation of a 1local symbel and normal argument
replacement occurs, as shown in Example 2 below.

EXAMPLE 1: Generate a Local Symbol for the Missing Argument:

ALPHA Rl ;SECOND ARGUMENT IS MISSING.
TST R1

BEQ 64§ ;LOCAL SYMBOL IS GENERATED.
ADD #5,R1

645

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ;SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2

BEQ XY3Z2 ;NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD #5,R2

XYZ:

Automatically~generated local symbols are restricted to the first
16 (10) arguments of a macro definition.

Note that automatically~created local symbols resulting from the
expansion of a macro, as described above, do not in any way influence
local symbol block boundaries. In other words, such
~automatically~created 1local symbols do not establish a local symbol
block in their own right.

B :'m"’?
o

E

o

MACRO DIRECTIVES

However, when a macro has several arguments earmarked for automatic
local symbol generation, substituting a specific label for one such
argument introduces a risk that assembly errors will result. This is
because MACRO-11 constructs its argument substitution list at the
point of macro invocation. Therefore, the appearance of any 1label,
the JENABL LSB directive, or the .PSECT directive, in the macro
expansion will create a new local symbol block. This could leave
local symbol references in the previous block and the symbol
definitions in the new one, resulting in error codes in the assembly
listing (see Appendix D). Furthermore, a subsequent macro expansion
that generates local symbols in the new block may duplicate one of the
symbols in guestion, resulting in an additional error code (P) in the
assembly listing. :

7.3.6 Keyword Arguments

Macros may be defined with and/or invoked with keyword arguments. A
keyword argument has the following form:

name=string
where
name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless properly delimited as described in section 7.3.

When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call.

When a keyword argument appears in the real argument list of a macro
call, the specified string becomes the real argument for the dummy
argument that exactly matches the specified name, whether or not the
dummy argument was defined with a keyword. If a match fails, the
entire argument specification is treated as the next positional real
argument. A keyword argument may be specified anywhere in the dummy
argument list of a macro definition and 1is part of the positional
ordering of argument. On the other hand, a keyword argument may be
specified anywhere in the real argument list of a macro call but does
not affect the positional correspondence of the remaining arguments.

1 LLISsT ME

2 ;

3 : DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST
4 ;

5

6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 .WORD CONTRL

8 «WORD BLOCK

9 .WORD ADDRES

10 .ENDM
11

12

13 :
14 ; NOW INVOKE SEVERAL TIMES

15 H

16

MACRO DIRECTIVES

17 000000 TEST A,B,C
000000 000000G .WORD A
000002 000000G .WORD B
000004 GOOULOOCG +WORD c
18
19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40
000006 00CO040 . WORD 40
000010 000030 .WORD 30
000012 000020 .WORD 20
20
21 000014 TEST BLOCK=5
000014 000001 . WORD 1
000016 000005 .WORD 5
000020 000000G +WORD TEMP
22
23 000022 TEST CONTRL=5,ADDRES=VARIAB
000022 0000605 .WORD 5
000024 0COOULO .WORD
000026 000000G .WORD VARIAB
24
25 000030 TEST
000030 000001 .WORD 1
000032 000000 .WORD
000034 000600G «.WORD TEMP
26
27 000036 TEST ADDRES=JACK!JILL
000036 000001 .WORD 1
000040 000000 <WORD
000042 000000C .WORD JACKI!JILL
28
29
30 000001 +END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C

A'B: .ASC1z /C/
.BYTE ''A,''B
.ENDM

when the macro DEF is called through the statement:
DEF X,Y,<MACRO-11>

it is expanded, as follows:

XY: .ASCIZ /MACRO-11/
.BYTE 'X,'Y

In expanding the first 1line, the scan for the first argument
terminates upon finding the first ' character. Since A is a dummy
argument, the ' is removed. The scan then resumes with B; B is also
noted as another dummy argument. The two real arguments X and Y are
then concatenated to form the label XY:. The third dummy argument is
noted in the operand field of the .ASCIZ directive, causing the real
argument MACRO-11 to be substituted in this field.

7-10

Oy

MACRO DIRECTIVES

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first ' character. Since
it is neither preceded nor followed by a dummy argument, this '
character remains in the macro expansion. The scan then encounters
the second ' character, which is followed by a dummy argument and is
therefore discarded. The scan of argument A 1is terminated upon
encountering the comma {(,). The third ' character is neither preceded
nor followed by a dummy argument and again remains in the macro
expansion. The fourth {(and last) ' character is followed by another
dummy argument and 1is likewise discarded. (Note that four '
characters were necessary in the macro definition to generate two '
characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

Three directives are available in MACRO-1l which allow the user to
determine certain attributes of macro arguments. The use ¢of these
directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described separately below.

7.4.1 .NARG Directive

The .NARG directive is used to determine the number of arguments 1in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it does not, an error
code (0) is generated in the assembly listing. This directive takes
the form:

label: .NARG symbol
where: label represents an optional statement label.
symbol represents any legal symbol. This symbol |is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not

specified, the .NARG directive is flagged with an
error code (A) in the assembly listing.

7-11

MACRO DIRECTIVES

An example of the .NARG directive follows:
LTITLE NARG

JMACRN NOPP,NUM
JMARG SYM

« IF EN,8Y™
JMEXIY

JIFF

LRERPT NyM

NOR

18 fENDM

i1 LENDEC

12 «ENDM

O O~ 08U B Ll D

15 napean NOPP
ananee LNARG SYM

L IF EQ,SYM
2MEXIT
JIFF
JREPT
NDOPR
JENDM
LENDC

{6

{2 aanaep NOPP 6
RARAMY +NARG SYM
o IF EQ,8Y™
JMEXTIT
. 1FF
rAQORAL «RERPT &
NOP
+ ENDM
200038 gag2un NOP
AARRR2 . AAPR2URN NP
2202QL 00R240 NDP
PRA0QRE POA242 NOP
alerie QQe24R NOP
anaRL2 AfR2U” NOP
+ENDC
{9
20
21 g30001 «ENR

7.4.2 J.NCHR Directive

The .NCHR directive, which can appear anywhere in a MACRO-11 program,
is used to determine the number of characters in a specified character
string. This directive, which is useful in calculating the length of
macro arguments, takes the following form:

label: .NCHR symbol, <string>
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol is not
specified, the .NCBR directive is flagged with an
error code (A) in the assembly listing (see
Appendix D).

7-12

iy
}

MACRO DIRECTIVES

PRI represents any legal separator (comma, space,
and/or tab}.

<string> represents a string of printable characters. The
character string need be enclosed within angle
brackets (<>) or up-arrows (") only if the
specified character string contains a legal
separator {comma, space, and/or tab). If the
delimiting: characters do not match or if the
ending delimiter cannot be detected because of a
syntactical error in the character string (thus
prematurely termimating its evaluation), the .NCHR
directive is flagged with an error code (A) in the
assembly listing. :

An example of the .NCHR directive follows:

; «TITLF NCHR
3 +MACRD (HAR,MESS
4 JHNCHR SYM, MESS
g <HORD SYM
6 +ASCII /MESS/
b JEVEN
8 L ENDM
Q
1@
{1 eppanp M8G1t CHAR <HELLO>
peanas s MCHR SYM HELLD
gagrog nopans JHORD Sym
faren 112 «ASCIY /HWELLOZ
arapey 108
eaaagy t14
penras 114
aperes tiy
+EVEN
12
13
ta RARARY LENR

7.4,3 .NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of =
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it 1is flagged
with an error code (0) in the assembly listing. This directive takes
the form:

label: .NTYPE symbol,aexp
where: label represents an optional statement label.
symbol represents any legal symbol. This symbol is
egquated to the 6&-hit addressing mode of the
following argument. If a symbol is not specified,
the .NTYPE directive is flagged with an error code
(A} in the assembly listing.
' represents any legal separator (comma, space,
and/or tab).

7-13

MACRO DIRECTIVES

aexp represents any legal address expression, as used
with an opcode. If no argument is specified, the
result will be zero.

An example of the use of an .NTYPE directive in a macro definition |is
shown below:

; «TITLE NTVYPE
3 «MACRND SAVE, ARG
4 +NTYPE SYM, ARG
S «IF FR,8YMR TR
6 MOV ARG, =(SP) IREGISTER MODE
7 . IFF
a Mny HARG,=(SP) sNONmREGISTFR MODE
9 «ENDC
1@ s ENOM
11
12
13 CAGPAP0 QRARAAR TEMP JHORD o
14
15
16 20@An2 SAVE R
RAROAY LNTYPE SYM, R
«1F CEQ,8YMRT7Q
ANARR2 A1PTUS MAY Ry{,=(SP) 1REGISTER MODE
< JFF
MAY #RY,=(SP) sNONeREGISTFR MODE
«ENRC
17
18
19 pe2ony SAVF TEMP
AroneY +MNTYPE SYM, TEMP
«IF ER,SYMR TR
May TFMP, =l SP) tREGISTER MNDF
. IFF
QAQARRU MI2TUA MAy BETEMP, = (5P) INON-RFGISTFR MODFE
poganpe
«ENRE
2e
21
22 LB JEND

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B, Section B.Z2,

7.5 JERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to the 1listing file
during assembly pass 2. A common use of this directive is to provide
a diagnostic announcement of a rejected or erroneous macro call or to
alert the user to the existence of an illegal set of conditions
specified in a conditional assembly. If the 1listing file 1is not
specified, the .ERROR messages are - output to the command output
device. The .ERROR directive takes the form:

label: .ERROR expr ;text

Vi

—

MACRO DIRECTIVES

where: label represents an optional statement label.
expr represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly. :
H denotes the beginning of the text string.

text represents the specified message associated with
the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO-11 outputs a single line containing:

1. An error code (P)
2. The sequence number of the .ERROR directive statement
3. The value of the current location counter
4, The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR & ¢ INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

Seqg. Loc. Exp.
No. No. Value : Text
P 512 005642 000076 .ERROR A ;s INVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is similar to a macro
definition; essentially a macro definition that has only one dummy
argument. At each expansion of the indefinite repeat range, this
dummy argument is replaced with successive elements of a specified
real argument list. An indefinite repeat block directive and its
associated repeat range are coded in-line within the source program.
This type of macro definition and expansion does not require calling
the macro by name, as required in the expansion of conventional macros
previously described in this section.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block (see
Section 7.7). The rules for specifying indefinite repeat block
arguments are the same as for specifying macro arguments (see Section
7.3).

7.6.1 L(IRP Directive
The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement

process occurs during the expansion of an indefinite repeat block
range. This directive takes the following form:

7-15

MACRO DIRECTIVES

label: LIRP sym,<argument list>

(rénge of indefinite repeat block)

»

. ENDM
where: label represents an optional statement label.

sym represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRP directive is
flagged with an error code (A) in the assembly
listing.

r represents any legal separator (comma, space,
and/or tab).

<argument list> represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions and repeat ranges. The (MEXIT
directive {(see Section 7.1.3) is legal within the
range of an indefinite repeat block.

.ENDM indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1.

7.6.2 LJIRPC Directive

The .IRPC directive is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with each
successive character in the specified string. The .IRPC directive is
specified as follows:

label: LJ(IRPEC sym,<string>

(range of indefinite repeat block)
. ENDM

where: label reptésents an optional statement label.

3

e
£ ™

L3

e

MACRO DIRECTIVES

sym represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRPC directive is
flagged with an error code (A) in the assembly
listing.

’ represents any legal separator (comma, space,
and/or tab).

<string> represents a list of characters enclosed within
angle brackets to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are reguired only when the string
contains separating characters, their use is
recommended for legibility.

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions and repeat
ranges. The .MEXIT directive (see Section 7.1.3)
is legal within the range of an indefinite repeat
block. :

.ENDM indicates the end of the indefinite repeat block
range. -

An example of the use of the .IRPC directive is shown in Figure 7-1.

1 JTITLE IRPTSY
2 LT87 ME
3
4
5
s JIRP X,<44,BB,CC,D0,EE,FF>
’ MOV X, (RO}«
B JENDM
200R03 V16720 AALRAEAG MOV AL, (R}
Pnenas P16720 GAINOO6 Lie2Y BR, (R@)+
AARGLE 216720 A0020RC ; MOV CC,(RDY»
P0P014 B16722 APORAAG . MOV 00, (RA)e
fARA22¢ V16720 QPBARRG) MoV EE,(RB) ¢
020024 @16720 ARY006 MOV FF,{RQ)e
9 .
18
11 LIRPC X, <ABCDEF>
12 MOVB ®ix,=(RY)
13 +ENDM
am@a3e 112741 Q@evaaes MovB Whk,~{R1)
Q20034 112741 Q800206 MOVB %B, e (Ry)
geeeder 112741 Pe@R006 MOVB #C,»(RY1)
200044 112741 @PRE0O6 MOVB KD, =(R1)
peanse 112741 @200006 mMove HE,=(RL)
‘4 00354 112741 220006 Move #F,»(RY)
15
16 pagoet’ LEND

Figure 7-1 Example of .IRP and .IRPC Directives

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

It is sometimes useful to duplicate a block of code a number of times
in-line with other source code. This duplication of code is
accomplished by creating a repeat block, wusing a directive in the
form:

7-17

MACRO DIRECTIVES

label: .REPT exp

-

(range of repeat block)

.

. ENDM
where: label represents an optional statement label.

exp represents any legal expression whose value
controls the number of times the block of code is
to be assembled within the program. When the
expression value is 1less than or equal to zero
(0), the repeat block is not assembled. If this
expression is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated the
number of times determined by the specified
expression value. The repeat block may contain
macro definitions, indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive is
legal within the range of a repeat block.

. ENDM indicates the end of the repeat block range. The
or terminating statement in a repeat block can be
.ENDR either an .ENDM directive or an .ENDR directive.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are required in the
assembly of the source program. The .MCALL directive allows vyou to
specify the names of all system or user macro definitions not defined
within the source program but which are required to assemble the
program. The .MCALL directive must appear before the first occurrence
of a call to any externally-defined macro. The .MCALL directive is of
the form: ' ~

.MCALL argl,arg2,...argn

where: argl, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The symbolic macro names may be

separated by any legal separator (comma, space,
and/or tab).

The .MCALL directive thus provides the means to access both
user-defined and system macro libraries during assembly.

The /ML switch under RSX-11l and the /LIBRARY qualifier under IAS and
RT-11, specified in connection with an input file specification,
indicate to MACRO-11 that the file is a macro library. When a macro
call is encountered in the source program, MACRO-11 first searches the
user macro library for the named macro definitions, and, if necessary,
continues the search with the system macro library.

7-18

e

\,,{q‘.\%%

Fa

MACRO DIRECTIVES

Any number of such user-supplied macro files may be designated. In
cases of multiple 1library files, the search for the named macros
begins with the last such file specified. The search continues in
reverse order until the reguired macro definitions are found,
terminating again, if necessary, with a search of the system macro
library.

If any named macro is not found upon completion of the search, i.e.,
if the macro is not defined, the .MCALL statement is flagged with an
error code (U} in the assembly listing. Furthermore, a statement
elsewhere in the source program which attempts to expand such an
undefined macro is flagged with an error code (0) in the assembly
listing.

The command strings to MACRO-11, through which file specifications are
supplied, are described in detail in the appropriate system manual
(see Section 0.3 in the Preface).

AT
E
e

£

&

Ea
g "?:

APPENDIX A

MACRO-11 CHARACTER SETS

A.1 ASCII CHARACTER SET

EVEN 7-BIT

PARITY OCTAL '

BIT CODE CHARACTER REMARKS

0 000 NUL Null, tape feed, CONTROL/SHIFT/P.

1 g0l SOH Start of heading; also SOM, start
of message, CONTROL/A.

1 002 STX Start of text; also EOA, end of
address, CONTROL/B.

0 003 ETX End of text; also EOM, end of
message, CONTROL/C.

1 004 EOT End of transmission (END); shuts
off TWX machines, CONTROL/D.

0 005 ENQ Enguiry {ENQRY) 5 also WRU,
CONTROL/E.

0 006 ACK Acknowledge; also RU, CONTROL/F.

1 007 BEL Rings the bell. CONTROL/G.

1 010 BS Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

0 011 HT Horizontal tab. CONTROL/I.

0 012 LF Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

1 013 VT Vertical tab (VTAB). CONTROL/K.

0 014 FF Form Feed to top o©of next page
(PAGE). CONTROL/L.

1 015 CR Carriage return to beginning of
line; duplicated by CONTROL/M.

1 0lé6 SO shift out; changes ribbon color to
red. CONTROL/N.

0 017 SI Shift in:; changes ribbon color to
black. CONTROL/O.

1 020 DLE Data link escape. CONTROL/P (DCO).

0 021 DCl Device control 1; turns
transmitter (READER) on, CONTROL/Q
(X ON). O 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).

1 023 DC3 Device control 3; turns
transmitter {(READER)
off, CONTROL/S (X OFF).

0 024 DC4 Device control 4; turns punch or

auxiliary off. CONTROL/T (AUX
OFF).

EVEN

PARITY

BIT

7-BIT
OCTAL
CODE

MACRO~11 CHARACTER SETS

CHARACTER

REMARKS

1

OCQI—‘)—‘OHOOHCH!—‘OHOOF‘I—'OOI—'CF‘O—‘G)—‘OQHOHHOOPHCHODHHOOHOHHC

025

026

027

030
031
032
033
034
035
036
037
040
041
042

044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072

074
075
076
077
100
101
102
103
104
105
106
107
110
111

NAK

SYN

ETB

B B dP e -

i~

HIQUEBOUAOWP@® IV Il A ¢ OO SO U B WN kO

Negative acknowledge; also ERR,
ERROR. CONTROL/U.

Synchronous file (SYNC).
CONTROL/V.

End of transmission block; also
LEM, logical end of medium.
CONTROL/W.

Cancel (CANCL). CONTROL/X.

End of medium. CONTROL/Y.
Substitute. CONTROL/Z.

Escape. CONTROL/SHIFT/K.

File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

9

———

g

" "?;vé
S

fae

Ll QCOROCMEPEPEOON RO OOMCOCKRMOFOQRRFOCKH O OCOMMFHOFOOMHMOOHOHRFOFOCOROH

EVEN 7-BIT
PARITY ‘OCTAL

BIT .CODE

MACRO-11 CHARACTER SETS

CHARACTER|

REMARKS

112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
1132
133
134
135
136
137
140

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
16l
162
163
164
165
166
167
170
171
172
173
174
175
176

177

* ~ DAppears as ¥ or

* % +'&ppeérs as

P SN KXESCHNDOWOZIrRY

-4

C TN X ELCNRQTVOI B HALKHITOQMRMD ALOTW

DEL

~

SHIFT/K.
SHIFT/L.
SHIFT/M.
*

* %
Accent grave.

This code generated by ALTMODE.

This code generated by
(if present).
DELETE, RUBOUT.

on some machines.

_ on some machines.

A-3

PREFIX key

MACRO-11 CHARACTER SETS

A.2 RADIX~50 CHARACTER SET

Character ASCII Octal Equivalent Radix-50 Eguivalent
space 40 0
A~Z 101-132 1-32
$ 44 33
56 34
unused v 35
0-9 60-71 36-47

The maximum Radix-50 value is, thus,
47*%502% +47*%50+47=174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix—-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002
X2B=115402

SINGLE CHAR.
OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER
Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
c 011300 C 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
o) 056700 0 001130 0 000017
P 062000 p 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 5 000023
T - 076400 T 001440 T 000024
U 101500 U 001510 ¢] 000025
v 104600 v - 001560 v 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 ¥ 000031
Z 121200 zZ 002020 Z 000032
$ 124300 $ 002070 $ 000033

A-4

f1g

MACRO-11 CHARACTER SETS

SINGLE CHAR.

OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER

. 127400 . 002140 . 000034
Unused 132500 Unused 002210 Unused 0000635
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

MACRO~11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B

B.1 SPECIAL CHARACTERS

Character Function

Pray Label terminator

Direct assignment operator

Register term indicator

Item terminator or field terminator

Item terminator or field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

{comma) Operand field separator

Comment field indicator

Arithmetic addition operator or auto
increment indicator

Arithmetic subtraction operator or auto
decrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

{apostrophe) Single ASCII character indicator or
concatenation indicator

Assembly location counter

Initial argument indicator

Terminal -argument indicator

Universal unary operator or argument
indicator

\ Macro call numeric argument indicator

vertical tab Source line terminator

A0 oo ||
T
o o
Q
4]

L SR LI T P

PN

- 2 N ¥

IV A

B.2 SUMMARY OF ADDRESS MODE SYNTAX

- Address mode syntax is expressed in the summary below using the

B following symbols: n is an integer between 0 and 7 representing a
register number; R is a register expression; E 1is an expression;
and ER is either a register expression or an expression in the range 0
to 7.

MACRO~11 ASSEMBLY LANGUAGE AND

ASSEMBLER DIRECTIVES

Address Address
Mode Mode

Format Name Number Meaning

R Register On Register R contains the
operand. .

@R or Register In Register R contains the ad-

(ER) deferred dress of the operand.

(ER) + Autoincrement 2n The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

@(ER)+ Autoincrement 3n The register specified as (ER)

Deferred contains the pointer to the
address of the operand; the
register (ER) 1is incremented
after use.

- (ER) Autodecrement 4n The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

@- (ER) Autodedremenﬁ 5n The contents of the register

Deferred specified as (ER} are
decremented before being used
as the pointer to the address
of the operand.

E(ER) Index 6n The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

@E (ER) Index Deferred n The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

#E Immediate 27 The expression E is the
operand itself.

Q#E Absolute 37 The expression E is the

: address of the operand.

E Relative 67 The address of the operand E,
relative to the instruction,
follows the instruction.

QE Relative 77 The address of the operand is

Deferred pointed to by E whose address,
relative to the instruction,
follows the instruction.

B.3 ASSEMBLER DIRECTIVES

The MACRO-11 assembler directives are

table.

For a detailed description

B-2

summarized in the following
of each directive, the table

sy
oA

S

. “"’35!3
,i"”

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

contains referenc

manual.

es to the appropriate sections in the body of the

Form

~Section
Reference -

Operation

fan
"Cegpr
“Dn
“Fn
“On

“Reec

.ASCII /string/

6.3.3

6.4.1.2
6.4.2.2
6.4.1.2
6.4.2.2
6.4.1.2

6.3.7
6.3.4

A single quote (apostrophe)
followed by one ASCII character
generates a word which contains the
7-bit ASCII representation of the

- character in the low-order byte and

zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments (see
Section 7.3.6}.

A double gquote followed by two

| ASCII characters generates a word

which contains the 7-bit ASCII
representation of the two

-characters. The first character is
- stored in the low-order byte; the

second character is stored in the
high—-order byte.

Tempotary radix control; causes
the wvalue n to be treated as a
binary number.

Temporary numeric control; causes
the expression's value to be ones~-
complemented.

Temporary radix control; causes
the wvalue n to be treated as a
decimal number.

Temporary numeric control; causes
the value n to be treated as a
sixteen-bit floating-point number.
Temporary radix control; causes
the wvalue n to be treated as an
octal number.

Convert ccc t£to Radix-50 form.

Generates a block of data

~containing the ASCII equivalent of

the character string (enclosed in
delimiting characters), one
character per byte.

B-3

MACRO~11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.ASCIZ /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,..

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

.ENDC

.ENDM [namel

.ENDR

.EOT

6.3.5

6.8.2

6.2

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed 1in
delimiting characters), one
character per byte, with a =zero
byte terminating the specified
string.

Begin or resume the absolute
program section.

Reserves a block of storage space
whose length in bytes is determined
by the specified expression,

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data:
each byte contains the value of the
corresponding specified expression.

Begin or resume named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if wused, must be
identical to the name specified in
the macro definition.

Indicates the end of the current
repeat block. This directive is
provided for compatibility with
other PDP-1l1l assemblers.

Ignored; indicates end-of-tape
(which is detected automatically by
the hardware). It is included for
compatibility with earlier
assemblers.

B-4

"

Hm?}

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

.GLOBL syml,sym2,...

.IDENT /string/

.IF cond,argl

IFF

.IFT

+IFTF

.IIF cond,arg,
statement

6.10.1

6.10.2

6.10.2

6.10.2

6.10.3

Section

Form Reference Operation

.ERROR exp;text 7.5 User-invoked error directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

.EVEN 6.5.1 Ensures that the current location

counter contains an even address by
adding 1 if it is odd.

Defines the symbol(s) specified as
global symbol{s}.

Provides a means of labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument({s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

Appears only within - a conditional
assembly block, indicating the
beginning of a section of ceode to
be assembled unconditionally.

Acts as a 1l-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

B-5

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.IRP sym,
<argl,arg2,...>

.IRPC sym,<string>

LLIMIT

.LIST [argl

+MACRO name,argl,
arg2,...

.MCALL argl,arq2,...

MEXIT

.NARG symbol

.NCHR symbol,<string>

NLIST [arg]

7.6.1

6.1.1

7.4.2

6.1.1

Indicates the beginning of an
indefinite repeat block in which

the symbol specified 1is replaced

with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an |

indefinite repeat block in which

the specified symbol takes on the

value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the

Task Builder inserts the low and
high addresses of the task image.

“Without an argument, ‘the LLIST

directive increments the listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified.

Indicates the start of a macro

definition having the specified

name and the following dummy
arguments.

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

Causes an exit from the current
macro expansion or indefinite
repeat block.

Can appear only within a macro
definition; equates the specified
symbol to the number of arguments

in the macro call currently being

expanded.

Can appear anywhere in a source

program; equates the symbol

specified to the number of

characters in the specified string.

Without an argument, the .NLIST

directive decrements the listing

level count by 1. With an

argument, this directive suppresses
that portion of the listing
specified by the argument.

B-6

MACRO~11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.NTYPE symbol,aexp

.ODD

.PAGE

.PRINT exp;text

.PSECT name,attl,...
attn

.RADIX n

.RAD50 /string/

.REPT exp

.SBTTL string

L.TITLE string

.WORD expl,exp2,..

Can appear only within a macro
definition; equates the symbol to
the 6-bit addressing mode of the
specified address expression.

Ensures that the current location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page, and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the cemmand ocutput device
containing the optional expression
and the statement <containing the
directive.

Begin or resume a named or unnamed
program section having the
specified attributes.

Alters the current program radix to
n, where n is 2, 8, or 10.

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of code up to the next
.ENDM or L.ENDR directive to be
repeated the number of times
specified as exp.

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is c¢ollected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix—-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

B-7

o £

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are
automatically recognized by MACRO-1l. These symbols consist of both
op codes and assembler directives. The op codes {(i.e., the
instruction set) are 1listed first, followed by the directives which
cause specific actions during assembly.

For a detailed description of the instruction set, see the appropriate
PDP-11 Processor Handbook.

C.1 OP CODES

OCTAL :
MNEMONIC VALUE FUNCTIONAL NAME
ADC 005500 Add Carry '
ADCB 105500 Add Carry (Byte)
ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically
ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right
ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set
BEQ 001400 Branch If Equal
BGE 002000 Branch If Greater Than Or Equal
BGT 003000 Branch If Greater Than
BHI 101000 Branch If Higher
BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 050000 Bit Set
BISB 156000 Bit Set (Byte)
BIT 030000 Bit Test
BITB 130000 Bit Test (Byte) :
BLE 003400 Branch If Less Than Or Equal
BLO 103400 Branch If Lower
BLOS 101400 Branch If Lower Or Same
BLT 002400 - Branch If Less Than

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
BMI 100400 Branch If Minus
BNE 001000 Branch If Not Equal
BPL 100000 Branch If Plus
BPT 0u0003 Breakpoint Trap
BR 000400 Branch Unconditional
BVC 1062000 Branch If Overflow Is Clear
BVS 102400 Branch If Overflow Is Set
CALL 004700 Jump To Subroutine (JSR PC, xxx)
CCC 000257 Clear All Condition Codes
CLC 000241 Clear C Condition Code Bit
CLN 000250 Clear N Condition Code Bit
CLR 005000 Clear Destination
CLRB 105000 Clear Destination (Byte)
CLV 000242 Clear V Condition Code Bit
CLZ 000244 Clear 7 Condition Code Bit
CMP 020000 Compare Source To
Destination
CMPB 1206000 Compare Source To
Destination (Byte)
COM 005100 Complement Destination
COMB 105100 Complement Destination
(Byte)
DEC 005300 Decrement Destination
DECB 105300 Decrement Destination
(Byte)
DIV 071000 Divide
EMT 104000 Emulator Trap
FADD 075000 Floating Add
FDIV 075030 Floating Divide
FMUL 075020 Floating Multiply
FSUB 075010 Floating Subtract
HALT 000000 Halt
INC 005200 Increment Destination
INCB 105200 Increment Destination
(Byte)
10T 000004 Input/Output Trap
JMP 000100 Jump
JSR 004000 Jump To Subroutine
MARK 006400 Mark
MFPL 006500 Move From Previous
Instruction Space
MFPS 106700 Move from PS
(LSI-11)
MOV 010000 Move Source To Destination
MOVB 110000 Move Source To Destination
(Byte)
MTPI 006600 ‘Move To Previous
Instruction Space
MTPS 106400 Move to PS
(LSI-11)
MUL 0706000 Multiply
NEG 005400 Negate Destination
NEGB 105400 Negate Destination (Byte)
NOP 000240 No Operation
RESET 000005 Reset External Bus
RETURN 000207 Return From Subroutine (RTS PC)
ROL 006100 Rotate Left
ROLB 106100 Rotate Left (Byte)
ROR 006000 Rotate Right

~

PERMANENT S¥YMBOL TABLE (PST}

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
RORB 106000 Rotate Right (Byte)
RTI 060002 Return From Interrupt
(Permits a trace
trap)
RIS 000200 Return From Subroutine
RTT Q0u006 Return From Interrupt
: (inhibits trace trap)
SBC uo5600 Subtract Carry
SBCB 105600 Subtract Carry (Byte)
SCC 000277 Set All Condition Code Bits
SEC 000261 Set C Condition Code Bit
SEN aou270 Set N Condition Code Bit
SEV 000262 Set V Condition Code Bit
SEZ 000264 Set 2 Condition Code Bit
S0B 077000 Subtract One And Branch
SUB 160000 Subtract Source From
Destination
SWAB 000300 Swap Bytes
SXT 006700 Sign Extend
TRAP 104400 Trap
TST Q05700 Test Destination
TSTB 105700 Test Destination (Byte)
WAIT 000001 Wait For Interrupt
XOR 074000 Exclusive OR

op CO&ES FLOATING POINT PRQCESSQR ONLY

QCTAL
MNEMONIC VALUE FUNCTIONAL NAME
ABSD 1708600 Make Absolute Double
ABSF 170600 Make Absolute Fleoating
ADDD 172000 Add Double
ADDF 172000 Add Floating
CFCC 170000 Copy Floating Condition
Codes
CLRD 170400 Clear Double
CLRF 170400 Clear Floating
CMPD 173400 Compare Double
CMPF 173400 Compare Floating
DIVD 174400 Divide Double
DIVF 174400 Divide Floating
LDCDF 177400 Load And Convert From
Double To Floating
LDCFD 177400 Load And Convert From
© Floating To Double
LDCID 177000 Load And Convert Integer To
' Double
LDCIF 177000 L.oad And Convert Integer To
Floating
LDCLD 177000 Load And Convert Long
integer To Double
LDCLF 177000 Load And Convert Long
Integer To Fleoating
LDD 172400 Load Double
LDEXP 176400 Load Exponent

c-3

il

PERMANENT SYMBOL TABLE - (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME

LDF 172400 Load Floating

LDFPS 170100 Load FPPs Program Status

MFPD 106500 Move From Previous Data
Space

MODD 171400 Multiply And Integerize
Double

MODF 171400 Multiply And Integerize
Fleating

MTPD 106600 Move To Previous Data Space

MULD 171000 Multiply Double

MULF 171000 Multiply Floating

NEGD 170700 Negate Double

NEGF 170700 Negate Floating

SETD 170011 Set Double Mode

SETF 170001 Set Flcocating Mode

SETI 170002 Set Integer Mode

SETL 170012 Set Long Integer Mode

SPL 000230 Set Priority Level

STCDF 176000 Store And Convert From
Double To Floating

STCDI 175400 Store And Convert From
Double To Integer

STCDL 175400 Store And Convert From
Double To Long Integer

STCFD 176000 Store And Convert From
Floating To Double

STCFI 175400 Store And Convert From
Floating To Integer

STCFL 175400 Store And Convert From
Floating To Long Integer

STD 174000 Store Double

STEXP 175000 Store Exponent

STF 174000 Store Floating

STFPS 170200 Store FPPs Program Status

STST 170300 Store FPPs Status

SUBD 173000 Subtract Double

SUBF 173000 Subtract Floating

TSTD 170500 Test Double

TSTF 170500 Test Floating

C.2 MACRO-11 DIRECTIVES

DIRECTIVE FUNCTIONAL SIGNIFICANCE

.ASCII Translates character string to ASCII equivalents.

.ASCI1zZ Translates character string to ASCII equivalents;
inserts zero byte as last character.

.ASECT Begins absolute program section (provided for
compatibility with other PDP~-1l1 assembliers).

.BLKB Reserves byte block in accordance with wvalue of
specified argument.

. BLKW Reserves word block in accordance with wvalue of
gspecified argument. .

.BYTE Generates successive byte data in accordance with
specified arguments.

.CSECT Begins relocatable program section (provided for

compatibility with other PDP-11 assemblers).

C-4

o

o
1?
.

M;) .
r

PERMANENT SYMBOL TABLE (PST)

e
AT,

DIRECTIVE FUNCTIONAL SIGNIFICANCE

+DSABL Disables specified function.

.ENABL Enables specified function.

.END Defines logical end of source program.

.ENDC Defines end of conditional assembly block.

. ENDM Defines end of macro definition, repeat block, or
indefinite repeat block.

.ENDR Defines end of current repeat block (provided for
compatibility with other PDP~1l assemblers).

.EOT Define End of Tape condition (ignored).

.ERROR Outputs diagnostic message to 1listing file or

EVEN

.IF
.IFF

LIFT
LIFTF
LIIF

.IRP

.IRPC

.LIMIT

.LIST

+.MCALL
.MEXIT
.NARG
.NCHR
.NLIST
.NTYPE
.0ODD
.PAGE
« PRINT
.PSECT

.RADIX
.RADS50

. REPT

command ocutput device.
Word—aligns the current location counter.

eclares g P

Labels object module with specified program
version number.

Begins conditional assembly block.

Begins subconditional assembly block (if
conditional assembly block test is false).
Begins subconditional assembly block (if

conditional assembly block test is true).

Begins subconditional assembly block {(whether
conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
{(if specified condition is satisfied).

Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.

Begins indefinite repeat block; replaces

specified symbol with value of successive
characters in specified string.

Reserves two words of storage for high and low
addresses of task image.

Controls listing level count and format of

assembly 1listing. .MACRO Denotes start of macro
definition. '

Identifies required Macro definition{(s) for
assembly.

Exit from current macro definition or indefinite
repeat block.

Equates specified symbol to the number of
arguments in the macro expansion.

Equates specified symbol to the number of
characters in the specified character string.
Controls listing 1level count and suppresses
specified portions of the assembly listing.
Equates specified symbols to the addressing mode
of the specified argument.

Byte-aligns the current location counter.

Advances form to top of next page.

Prints specified message on command output device.
Begins specified program section having specified
attributes.

Changes current program radix to specified radix.
Generates data block having Radix-50 equivalents
of specified character string.

Begins repeat block and replicates it according to
the value of the specified expression.

Cc-5

PERMANENT SYMBOL TABLE (PST)

DIRECTIVE FUNCTIONAL SIGNIFICANCE

.SBTTL Prints specified subtitle text as the second line
of the assembly listing page header.

.TITLE Prints specified title text as object module name
in the first 1line of the assembly listing page
header.

.WORD Generates successive word data in accordance with

specified arguments.

The MACRO-11 directives listed above are summarized in greater detail

in Appendix B.

c-6

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

D.1 MACRO-11 ERROR CODES

A diagnostic error code is printed as the first character in a source
line which contains an error detected by MACRO-11l. This error code
identifies a syntactical problem or some other type of error condition
detected during the processing of a source line. An example of such a
source line is shown below:

Q 26 000236 010102 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different types of
error conditions produce this diagnostic message,
all the possible directives which may yield a
general assembly error have been categorized below
to reflect specific classes of error conditions:

CATEGORY 1l: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 10 is
specified as a new radix.

.LIST/.NLIST -- Other than a legally defined
argument (see Table 6-1) is specified with the
directive.

.ENABL/.DSABL ~-- Other than a legally defined
argument (see Table 6-2) is specified with the
directive.

.PSECT =~ Other than a legally-defined argument
- (see Table 6-~3) is specified with the
directive.

IF/.1IF -- Other than a legally defined
conditional test (see Table 6-5) or an illegal
argument expression value is specified with the
directive.

.MACRO -- An illegal or duplicate symbol found
in dummy argument list.

DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code

Meaning

A
(Cont'd)

CATEGORY 2: NULL ARGUMENT OR SYMBOL SPECIFIED.

.TITLE -~ Program name is not specified in the
directive, or first non-blank character
following the directive is a non~Radix-50
character.

.IRP/.IRPC -- No dummy argument is specified in
the directive.

+NARG/.NCHAR/.NTYPE -- No symbol is specified
in the directive,

IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION.

.ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive.

.NCHAR ~-- Character string delimiters do not
match, or an illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction,
i.e., from -128(10) to +127(10) words, has
been exceeded.

2. A statement makes invalid use of the
current location counter, e.qg., a
".=expression" statement attempts to force
the current location counter to <cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression. In cases where an absolute
address expression is required, specifying
a global symbol, a relocatable value, or a
complex relocatable value (see Section 3.9)
results in an invalid address expression.
Similarly, in cases where a relocatable
address expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
likewise results in an invalid address
expression. Specific cases of this type of
error are those which follow:

kY

aromy
i\%
S

DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code

Meaning

.BLKB/.BLKW/.REPT -- QOther than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbel to ‘be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

i. A global assignment statement
(symbol==expression) contains a forward
reference to another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location

counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

. End directive not found. When the end-of-file is

reached during source input and the .END directive
has not yet been encountered, MACRO-1l1 generates
this error code, ends assembly pass 1, and
proceeds with assembly pass 2.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only through excessive substitution of real
arguments for dummy arguments during the expansion
of a macro.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

+DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code

Meaning

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register—-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error c¢ode include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

"'s’ﬂ%

APPENDIX E

SAMPLE CODING. STANDARD

E.1 INTRODUCTION

Standards eliminate wvariability and the reguirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. < However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITAL's PDP-11 Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 GLINE PORMAT

All source lines shall consist of from one to a maximum of eighty
characters {not including the audit trail added by SLIPR {SLP in
RSX-11M) editor. This program is described in the applicable RSX-11M
or RSX-11D Utilities Manual or in the IAS Editing Utilities Reference
Manual (see Section 0.3 in the Preface).

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. <Comments field - the comments field shall start at tab stop 4
{column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a 1line <containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be

If the operand field extends beyond tab stop 4 {(column 33) simply
leave a space and start the comment. Comments which apply to an
instraction but require continuation should always line up with the
chatracter position which started the comment.

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. 1In
general this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence ;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

+

THE INVERT ROUTINE ACCEPTS

A LIST OF RANDOM NUMBERS AND
APPLIES THE KOLMOGOROV ALGORITHM
TO ALPHABETIZE THEM.

w5 ME WE W wE ws

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose Registers - Only the following names are
permitted as register names; and may not be used for any other
purpose:

RO=%0 ;REG 0

R1=%1 ;REG 1

R2=%2 ;REG 2

R3=%3 ;REG 3

Ré4=%4 sREG 4

R5=%5 ;REG 5

SP=%0 ;s S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>