.
¥

S I R—

380Z

and

LINK 480Z

FIRMWARE

REFERENCE
MANUAL

FIRMWARE REFERENCE MANUAL
PN 10971 Revision 1

Copyright 1984 © Research Machines Ltd.

All rights reserved. although customers may make copies of this
publication exclusively for their own use, you may make no other form of
copy of any part of it without our written premission.

CP/M, CP/NET, and CP/NOS are the names of
this publication, and they are trademarks of Digital Research Inc.

trademark of Zilog corporation.

Because of our policy of continuous improvement in our products and
services, we may make changes without notice. We have tried to keep the
information in this publication completely accurate; however, we cannot be
held responsible for the consequences of any errors or omissions.

Customers comments are of great value to us in improving the quality of our
microcomputer systems, publications, and services. If you would like to

make any comments, please use the reply-paid form provided for this purpose
at the back of this manual.

Rk RRORRY

Written and published by Research Machines Limited using the WordStar word-
processing package running on a Research Machines 3802-D microcomputer.
Printed by Hazel Press, Abbey Trading Estate, Wembley, Middlesex HAO 1YT.

Research Machines Limited
Mill Street

Oxford

0X2 0BW

Phone: Oxford (0865) 249 866

-
i |
4

PREFACE

This manual is intended for application programmers and systems programmers
who wish to use the operating system facilities provided by the COS
firmware in 380Z computers and the ROS firmware in 4802 computers.

The manual assumes that you are familiar with the operation of your
computer (described in the relevant Users Guide) and how to program under
CP/M (described in CP/M and CP/NET Programmer's Guide, PN 12084).

Most people who program the 380Z and 480% will use CP/M. However, you may
wish to resort to the facilities described in this book when:

® writing fault-tolerant software (CP/M does not return much
diagnostic information to your programs)

e writing programs that handle cassette tape

L3 adapting programs designed to run on other manufacturers'
equipment to run on Research Machines computers

) writing time-critical programs where CP/M facilities are not fast
enough
° taking advantage of some of the special features of the 380Z and

480Z (that are not possible under CP/M).
This book is mainly concerned with firmware, but, in some instances, the
boundary between firmware and hardware is not precise. Hardware is
described in the following books:
380Z Disc System Information File, PN 10930

Link 480% Information File, PN 10939

Related Publications

Related topics are covered in the following publications:

The Zilog Z80 instruction set - MOSTEK Assembly Language Programming
Manual, PN 11069

Assembly Language programming - Machine Language Programming Guide for

and the use of the Front Panel 3802 and 480z, PN 11068

Research Machines ZASM assembler - ZASM Assembler for Disc and Network
Systems, PN 11066

Writing programs under the - CP/M and CP/NET Programmer's Guide,
control of CP/M or CP/NET PN 12084

Note
This manual replaces the following books:

® COS 3.4 Reference Manual, PN 10949

® COS 4.0 Differences from COS 3.4 Reference Notes, PN 10958

) LINK 480Z Resident Operating System 1.0 Reference Manual, PN 10965.

Contents

CONTENTS

CHAPTER 1 INTRODUCTION

Scope of the manual
What is firmware?
Identifying your firmware version
Firmware commands
Screen and Cursor Control
The EMT mechanism
Transferable software
Other firmware facilities
Debugging facility
Direct access to screen memory
Memory layout
Transfer vectors and device handlers
Position-independent code
Conventions used in this manual
Bits
Keyboard Entry
Implementation tables with version differences

. « e .
VOO AWNN

. e

.

ek b ed e b e ed e e ek b el = e
. .
- PYYWOYY oo

o

CHAPTER 2 SCREEN AND CURSOR CONTROL

Screen handling
Autopaging
Smooth scrolling
Windows

Cursor control

Character definitions
ASCII - coded characters
Teletext graphics characters
Special graphics characters
Special features

NI PRI
AU B WWNRNDN ==

NNMNNONNNNDNON
.

.

CHAPTER 3 SCREEN HANDLING - THE OUTC FAMILY

Summary of instructions and version differences 3.1
Definitions 3.2
Control characters 3.8
Definitions 3.9
Escape sequences 3.1
Definitions 3.1

S W

CHAPTER 4 SCREEN HANDLING -~ OTHER EMT INSTRUCTIONS

Summary of instructions and version differences 4
Definitions 4

CHAPTER 5 KEYBOARD HANDLING

Summary of instructions and version differences 5
Definitions 5

Contents

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

PRINTER AND INTERFACE HANDLING

Introduction

Summary of instructions and version differences
Definitions

CASSETTE HANDLING

Summary of instructions and version differences
Data transfer rate
Definitions

DISC HANDLING

Introduction

FDC board systems

IDC board systems

Logical operations

Precautions to be taken when using

logical operations

Sector parameter and information addressing
Summary of instructions and version differences
Definitions

FDC EMT definitions

IDC EMT definitions

IDC EMT error messages and exceptional conditions

MISCELLANEOUS EMT INSTRUCTIONS

Summary of instructions and version differences
Definitions

DEBUGGING FACILITY

The Front Panel
The Front Panel display
Front Panel commands
Pointer commands
Memory and registers modification
Input/output port commands
Jumps and steps
Search and calculate commands
The outside world
Latest commands

DIRECT ACCESS TO SCREEN MEMORY

3802 machines
COS 3.0 and 3.4
COS 4.0 and 4.2
480Z machines

10.1
10.2
10.4
10.4
10.8
10.12
10.14
10.17
10.20
10.23

11.1
11.1
11.3
11.4

CHAPTER 12

CHAPTER 13

CHAPTER 14

APPENDIX A

APPENDIX B

MEMORY LAYOUT

Usable Memory
Reserved memory
cos firmware (ROM)
COS video RAM + HRG
I/0 ports in a 3802
ROS firmware (ROM)
ROS system RAM
COS and ROS workspace (RAM)
System tables
Memory pages
Interrupt routines

TRANSFER VECTORS AND DEVICE HANDLERS

How the EMT mechanism works
Transfer vectors
Device handlers
The TRAPX vector
The KBDPRE location
Filters

POSITION-INDEPENDENT CODE

Introduction

Differences between PIC and relocatable code
The CALR instruction

Longe range calls

QUICK REFERENCE EMT GUIDE

OUTC instructions that send characters to the screen
Maintenance instructions that modify screen effects
Instructions that access screen memory

Synchronizing instructions for screen memory address
Character pattern generating insturctions
Recommended keyboard-handling instruction

Other keyboard-handling instructions

Printer and interface handling

Cassette-handling instructions

Disc FDC instructions

Disc IDC instructions

Miscellaneous instructions

DISC FORMAT

IDC logical mapping
5.25=-inch single~-density discs
8-inch single-density discs
5.25-inch double-density discs
8-inch double-density discs
CP/M logical formats
5.25-inch single-density discs

Contents

12.1
12.3
12.3
12.3
12.4
12.5
12.5
12.5
12.6
12.8
12.8

13.1
13.2
13.3
13.5
13.7
13.8

14.1
14.1
14.2
14.4

i
e e v s

LR R >
aNNOUBBAEBDWNN-

Contents

8-inch single~density discs
5.25-inch double density discs
8-inch double-density discs

APPENDIX C I/0 PORTS

3802 I/0 Ports
480Z I/0 Ports

W ww
.
LS

Introduction

CHAPTER 1

INTRODUCTION

This chapter outlines the scope and contents of this manual.

Your computer system has several 'layers' of operation, as illustrated in
figure 1.1.

Applications Programs

CP/M Operating System

FIRMWARE

Hardware

Fiqure 1.1 Layers of operation

The lowest layer is the hardware, the electronics of your computer. The
hardware is driven by the firmware that carries out frequently-repeated
actions, such as keyboard entry and output to the screen.

Above the firmware, in a disc-based system, is the CP/M operating system

software that controls disc operations. The top layer is the application
program of your choice.

This manual is primarily concerned with the firmware layer, and how the
facilities it provides can be used when writing assembly language programs.

The first section defines the level of knowledge that is assumed of the
reader. The next two sections define what firmware is, and how an
important firmware facility, the EMT instruction, is used. Other firmware
facilities are discussed and, finally, the conventions used in this manual
are described.

Introduction

SCOPE OF THE MANUAL

We assume that you are familiar with assembler programming. If you are
not, the Research Machines manual: Machine Language Programming Guide for
380Z and 480Z provides an introduction to Z80 programming. There are
several instructional books on the market; contact your local bookseller.

Also, it is taken that you know how to:

® produce a text file of mnemonics using a text editor package such as
TXED
® use an assembler, such as ZASM, to assemble the text file into

machine code

® produce a .REL file (relocatable program) or a .HEX file (Intel
hexadecimal Format)

® use appropriate utilities such as LOAD and DDT (CPM), or a linker,
to produce an executable .COM file.

Research Machines manuals on these topics are listed below:

TXED Text Editor for Disc System and Network Users Reference Manual,
PN 11059

ZASM Assembler for Disc and Network Systems, PN 11066

CP/M Operating System Version 2.2D CP/M and CP/NET Programmer's
Guide, PN 12084

Further information can be obtained from Digital Research manuals,
obtainable from Research Machines.

WHAT IS FIRMWARE?

Like all computers, the 380Z and 480Z have machine~language programs
permanently stored in read-only memory. These programs are the bridge
between the computer hardware and the software, and are termed 'firmware'.

Firmware controls the interfaces between peripherals, software, memory and
yourself. For example, when your program outputs text to the screen or
printer, the operation is controlled by the resident firmware.

Firmware controls the internal operations of the computer, supports CP/M
(the World's leading disc-based operating system), and provides a number of
additional features not found on other computers:

e it performs certain functions from commands that you enter at the
keyboard
® you can write and check low-level (machine language) programs using

a facility known as the Front Panel.

Introduction

[you can write low-level programs that use firmware facilities. The
EMT instruction is used to do this.

. you can link in your own low-level routines.

In 380Z machines, the firmware is called the "Central Operating System"
(COS); in 4802 machines it is known as the "Resident Operating System"
(ROS). There have been several versions of COS and ROS as upgrades have
been made to improve performance, but all versions have been very similar
in design to ensure as much program compatibility as possible. In the case
of COS, versions earlier than COS 3.0 are not covered in this manual.

Identifying Your Firmware Version

In subsequent chapters, we describe the firmware in detail. Some of the
facilities may not be available in your firmware version. To make it
easier for you, we describe the differences between firmware versions at
the start of each chapter.

When you switch on or reset your 380Z or 480Z, the firmware displays its
name and version number on the screen (the start-up message). Table 1.1
summarizes the firmware versions for the 380Z, and also shows the start-up
message for each version.

Table 1.1 3802 Firmware version and start-up messages

Version Revision System Start-up
Type Message
c cos 3.0/C
cos 3.0 - M cos 3.0/M
F cos 3.0/F
[od C cos 3.4 C/C
D cos 3.4 D/C
[o] M cos 3.4 C/M
Ccos 3.4 D CcOS 3.4 D/M
[o] F cos 3.4 C/F
E CcOSs 3.4 E/F
A M COS 4.0 A/M
B cOSs 4.0 B/M
CcOos 4.0
- F cOoSs 4.0/F
A coS 4.0 A/F
COS 4.2 A - COS 4.2 A

1.3

Introduction

In the table, a revision covers minor changes that do not affect the user.
System type in COS 3.0, 3.4 and 4.0 refers to the type of external storage:
cassette tape (C); 5.25-inch, single-density disc (M); and 8-inch, single-
density disc (F). In COS 4.2, there is no system type, but systems can
have either 5.25-inch or 8-inch double-density discs.

If the firmware version of your system is COS 3.0 or earlier, you are
strongly recommended to consult Research Machines about updating to a more

recent version; more recent applications software requires the features of
COS 3.4 and later.

Table 1.2 summarizes firmware versions for the 4802, with start-up
messages. There are no system-type designations, but ROS 1.0 and ROS 1.1
support cassette tape external storage while ROS 1.2 and 2.2 support both
cassette tape and 5.25 inch, double~density disc storage.

Table 1.2 4802 firmware versions and start-up messages

Version Revision Start-up message

ROS 1.0 - RML 40-Character LINK 480Z V1.0
RML 80-Character LINK 480Z V1.0

ROS 1.1 A RML 40-Character LINK 480Z V1.1 A or B
B RML 80-Character LINK 4802 V1.1 A or B
A

ROS 1.2 B RML 80-Character LINK 480% vi.2 a, B, C,
(o] or D
D

3
7]
N
.

N
[

RML 80-Character LINK 480Z V2.2 B

Firmware Commands

Details of the keyboard-entered firmware commands are given in your Users
Guide. Table 1.3 summarizes these commands and their functions; in general
these have not changed with changes in firmware version. However, some
commands are not present in all versions (see implementation in table 1.3).

Introduction

-
! Table 1.3 Firmware commands
- Command Function Implementation
B Boot CP/M COS disc versions, ROS 1.2 and
2.2
s
X Boot CP/M from another COS disc versions, ROS 1.2 and
drive 2.2
N Boot network ROS only
s
T Enter terminal mode ROS only
L Load program from cassette All versions except COS 4.0 and
o 4.2
D Dump memory to cassette All versions except COS 4.0 and
4.2
— Cc Continue program at restart All versions except COS 4.0 and
address 4.2
J Jump to address and start All versions
program
e
! (o] Select printer option All versions
(see below)
M Enable HRG board as memory COS 3.4 and 4.0 only
—_—
W Select 40 or 80-character All 80-character machines
mode
R Enter BASIC in ROM ROS 1.1, 1.2, and 2.2
aen
‘ CTRL/SHIFT/8 Interrupt program, return to ROS only
most recent operating system
. CTRL/SHIFT/9 Interrupt program and enter ROS only
Front Panel
CTRL/F Enter Front Panel All versions
o CTRL/T Enter typewriter mode All versions

The O command selects both printer option and cassette speed in all

- versions except COS 3.4/M, 3.4/F, 4.0 and 4.2 (these versions do not
support cassette features).

1.5

Introduction

Screen And Cursor Control

Chapter 2 gives information about some screen control and cursor control
facilities that are of importance later in the manual. Definitions are
given of the types of characters used on 380Z and 480Z machines.

THE EMT MECHANISM

It is very useful to be able to access the routines of the firmware,
particularly for common actions like those mentioned above. This would be
very easy if the firmware did not change from version to version.

Except where there are major hardware changes, the firmware routines do not
change much from version to version. But the position in memory of each
routine does change. Consequently, a standard way of accessing the
firmware is needed, and this must work in all versions despite differences.

This is done by a mechanism that resembles the operation of a storekeeper.
Rather than going into a warehouse to look for an item, you must consult a
storekeeper with your request. He knows where the item is kept, and he
finds it for you. Each firmware version has its own "storekeeper™”.

The mechanism uses a single entry point to the routines; this is called the
EMT (EMulator Trap) mechanism. Access to routines is made using a two-byte
call. The first byte contains the 280 instruction, RST 30H, and the second
byte contains the code number of the particular EMT routine that you want
to use.

The Research Machines ZASM Assembler interprets the EMT mnemonic. The
instruction:

emt n
(where n is the number of the required instruction)
is equivalent to:

rst 30h
defb n

in Zilog source code, or:

rst 6
db n

in Intel code.

Full details of the EMT-calling mechanism are given in chapter 12, but here
is a simple example of how two EMT instructions (KBDWF and OUTC) are used

Introduction

for keyboard input and screen output:

org 0100h
kbdwf equ 22h ; EMT
outc equ 01h jvalues.
start:
emt kbdwf ;Use EMT mechanism to get character
; from keyboard.
emt outc ;Use EMT mechanism to send entered
;jcharacter to screen.
ip start ;Repeat.
end

Chapters 3 to 9 give full details of the range of facilities available
using EMT instructions,and these include:

° Screen handling (the OUTC family) - chapter 3

. Screen handling (other EMT instructions) - chapter 4
[Keyboard handling - chapter 5

[Printer and interface handling - chapter 6

[] Cassette handling - chapter 7

. Disc handling - chapter 8

e Miscellaneous EMT instructions - chapter 9

Appendix A is a quick reference quide to all the EMT instructions.

Transferable Software

Research Machines microcomputers have evolved over the years with the
addition of new facilities. As these are added, they require firmware
support and, regrettably, incompatibility between systems occurs. Every
effort is made to reduce such occurrences, but there are times when
constraints or unforseen circumstances make them inevitable.

Such incompatibility is of little concern when software is written either
in a high-level language, or for a specific system in a low-level language.
However, problems occur with low-level software that is intended for use on
several systems, and with high-level programs that access low=-level
features directly (for example when using escape sequences).

To minimise these problems of program transfer, Research Machines recommend
that the firmware facilities should be accessed as follows:

[By CP/M mechanisms, where possible (see the CP/M Programmer's Guide,

Introduction

PN 12084)., This rules out cassette tape systems.
® By the EMT mechanism using common routines, where possible.

Details of the first implementation of EMT instructions and variations in
each firmware version are given at the beginning of each of the EMT
chapters (chapter 3 to chapter 9). These are presented in tabular form so
that you can see at a glance which are the common EMT instructions.

Guidelines are also given, in the introduction to each chapter, about the

best instructions to use for transferable software. The main areas of
incompatibility are in screen handling and cassette support.

OTHER FIRMWARE FACILIITES

This section contains information about other facilities provided by the
firmware, and aspects of memory layout that you will need to know about
when writing low-level language programs. Full details are given in later
chapters.

Debugging Facility

The firmware provides a very useful program-debugging feature. This is
known as the Front Panel, and it allows you to modify the 280 registers and
the contents of memory. There are several commands that allow you to test
programs for bugs. Full details are given in chapter 10.

Direct Access to Screen Memory

The normal way to send characters to the screen in your low-level programs
is to use EMT instructions. However, it is possible to write to the screen
by directly accessing the screen memory.

Direct access should not be used unless it is essential. For example, it

can be used to switch rapidly between several displays held in RAM.
Programs using this technique will not be transferable.

Chapter 11 gives details of direct access to screen memory.

Memory Layout

If you write a program that uses a lot of memory space or specialized areas
of memory, you will need to know about memory layout and the areas of
memory that are available. This information is provided in chapter 12.

Introduction

Transfer Vectors and Device Handlers

Some EMT instructions call subroutines using "transfer vectors". These are
locations in memory that contain the addresses of the subroutines.

By changing the address in the transfer vector, or by using the TRAPX
vector, you can cause an EMT to call a routine of your own, a device
handler. For example, you could write your own routine to control output
to a printer.

Chapter 13 shows how the EMT mechanism works and how you add device
handlers.

Position Independent Code

The firmware provides a relative-call instruction, CALR, that is useful

when writing position independent code (PIC). Chapter 13 introduces PIC
and CALR.

CONVENTIONS USED IN THIS MANUAL

This section outlines conventions that are used throughout the manual.

Bits
Several of the topics discussed in this manual refer to the bit pattern

within a byte of information. Figure 1.2 below shows the standard
numbering convention.

most significant bit least significant bit

One Byte

Figure 1.2 Bit numbering convention

Note that the lefthand end of the byte is most significant.

Introduction

Keyboard Entgx

Any specified character or characters to be keyed in at the keyboard are
contained between "<" and ">". Three examples are given below:

 <CTRL/F> <RETURN>

Implementation Tables With Version Differences

At or near the start of chapters 3 to 10 there are summary sections. These
include tables showing the firmware version in which each EMT instruction
was first introduced; the sections also include any changes to the
instruction in later versions that may influence whether software is

transferable. The following conventions have been used in producing these
tables:

] COS 3.4 is the reference version against which other implementations
are compared.

) A black circle is used to signify the first implementation of an EMT
instruction, except if the first implementation was in COS 3.0 or
earlier. Because COS 3.4 is the reference version, the black circle
is placed in the COS 3.4 column, and a "totally compatible™ symbol
(*) is placed in the COS 3.0 column.

] The following symbols are used to indicate version changes in terms
of the transferability of programs:

* Totally compatible. No (or minor) differences

+ Almost the same. Some differences but generally compatible.
Major differences. Probably incompatible.

X Not implemented.

For example, the table below gives information about implementation and
differences in cassette~handling EMT instructions. There is a row for each
EMT instruction and a column for each firmware version.

Cos Ccos cos cos cos ROS ROS ROS ROS
Name 3.0 3.4/C 3.4/M+F 4.0 4,2 1.0 1.1 1.2 2.2
PUTBYT * . * - - - - -
GETBYT * . o - - - - - -
GETSYN * 3 * X X + + + +
SETCAS * ° - X X * * * *
CASCTL X X X X X ° = bl *

1.10

Introduction

In this example, although four of the instructions were present in COS 3.0,
the black circles are not placed in the COS 3.0 column; they are put in the
COS 3.4 column, and stars are placed in the COS 3.0 column.

However, where instructions are not present, an X is used. For example,
CASCTL was first implemented in ROS 1.0, and the previous versions all have
an X in their column.

Reading along the GETSYN row, it is evident that this instruction is not

implemented in COS 4.0 or 4.2. It is implemented in all versions of ROS,
but with some differences from COS 3.4.

Screen and Cursor Control

CHAPTER 2

SCREEN AND CURSOR CONTROL

This chapter outlines details of screen-handling, cursor-control and
character definition on the 380Z and 4802 machines.

The first section gives screen-handling information, and the second section
covers cursor control. Finally, there is a section about character
definitions.

SCREEN HANDLING

With both the 380Z and 480Z machines, information is displayed on the
monitor using 24 lines. There can be 40 characters per line or 80
characters per line depending on the firmware version that you have:

[Early 380Z versions (COS 3.0 and 3.4) have only 40-character mode.
In COS 4.0 and 4.2, both 40 and 80-character modes are standard.

) When the 480Z was introduced, ROS 1.0 and 1.1 supported either only
40-character mode, or 40 and 80-character mode. In ROS 1.2 and 2.2,
40 and 80-character operation is standard.

Autopaging

If more than 23 lines of information are sent to the screen (for example,
when listing a program), the contents of the screen scroll upwards and stop
after 23 lines have been displayed. The cursor blinks at the bottom left
of the screen, and the next screenful is not displayed until a key on the
keyboard is pressed.

This is known as autopaging. If you want continuous screen display,
autopaging can be turned off by entering <CTRL/A>. You can return to
autopaging by pressing <CTRL/A> again (toggle switch). Autopaging can also
be turned on or off using the control characters, CTRL/S (on) and CTRL/Q
(off) - see chapter 3.

In COS 4.0 and 4.2, and all versions of ROS, there is a disable flag; when
set it disables autopaging. The state of the disable flag is controlled by
an escape sequence (defined in chapter 3).

NOTE: If the cursor is not in the bottom lefthand corner of the screen
before you start full screen scrolling with autopaging, there will
be more than 23 lines displayed before the first interruption. For
example, if the cursor was positioned at the top lefthand corner, 46
lines will be displayed before the scrolling stops.

The 23 lines are counted from the last keystroke entered, not from

Screen and Cursor Control

the last scroll position.

Smooth Scrolling
— - >5¢cro_.ling

Smooth scrolling, a slower (but smooth) scrolling speed than normal

scrolling, is available only in COS 4.0. The screen contents will scroll
smoothly upwards only.

Windows

In all firmware versions (except COS 3.0 and 3.4) it is possible to define
a rectangular area of the screen within which cursor movement and scrolling

are limited. Chapter 3 gives details of how to do this with the WINDOW EMT
or with an escape sequence.

CURSOR CONTROL
_— T

The rectangular cursor is normally situated at the point on the screen
where the next character sent to the screen will appear. If the cursor is
at the end of a line (column 39 or 79), it moves to the start of the next
line (column 0). Special note is taken at this point and, if the following
character is <RETURN>», it is ignored.

If the cursor is at the righthand end of the bottom line, the screen

contents are scrolled upwards one line; the cursor moves to the start of
the new bottom line.

Some of the facilities described in this manual allow cursor positioning at

any point of the screen. For this purpose, the origin of the x and Y axes
is at the top lefthand corner of the screen, as shown in Figqure 2.1.

0,0 ———es. x. (O b0 39 0r 79)

|

Y (o to 23)

@qqubrao-du;

Figure 2.1 Screen cursor positioning

Screen and Cursor Control

CHARACTER DEFINITIONS

ASCII - Coded Characters

Table 2.1 gives the seven bit ASCII-codes (0 to 127) used in Research
Machines computers. Note the differences between COS 3.0 and 3.4, shown in
table 2.1(a), and all other firmware versions, shown in table 2.1(b).
These are at hexadecimal values 23, 5B, 5C, 5D, 5P, 60, 7B, 7D, and 78.

Table 2.1 ASCII codes used in Research Machines computers

(a) COS 3,0 and 3.4 (b) COS 4.0 and 4.2
All versions of ROS

Colmm o 1 2 3 & 5 6 7
Row
- o NUL DLE e P ' p
N0 |12 |3|4|5]|6|7 1soH 0t 11 A Q@ a q
N N TN B R B 2| ovT2 BR b
H 1 ! a q
2 [svx |oc2 2 |8 | R 5 v PEX DB 4 3 C S ¢ s
3 |eTx |pc3 [3 c s c s s EOT DC4 $ 4 DT da t
4 |eotv|pce| s 4 D T d t
5 |eno [NAK]| % 5 E u e u s NG MK % 5 E U e u
e e T e cHE M & 6 FVF v
8 8BS [CAN | { 8 H X h x v & e N~ g w
9 | HT ' Em) s 4" ¥ i ¥ CAN ;
A | LF |sus I z i z ¢ ¢ 8 H X h x
g v |Esc| ~ « : x| % s HT My 9 I Y iy
L FF FS . < L [.
D crRiGs | - | =™ |=>]m % A% s Z o=z
E |50 |Rs - > N Al + s VI EBSC 4+ 5 K [Kk ¢
F s us ’ 2 o 'n o DEL
c FFFS s < L N 1 8
» CR Gs - = M 1 m 2
¢ S0 RS >Nt n ™~
Feus g 0 o DE

To read the hexadecimal code for a character, take the column number then
the row number from the table; for example, the character G has code 47 hex
(row 4, column7) or 71 decimal.

The control codes in columns 0 and 1 (discussed in chapter 3) all have
standard ASCII mnemonic names such as NUL, DLE, FF. Research Machines
refers to these characters by the equivalent keyboard character, a
combination of the CTRL key plus another key. If column 0 is transposed
with column 4, and column 1 with column 5, the corresponding keyboard
character code can be found; for example, the CTRL/F character corresponds
to ACK, CTRL/Z to SUB, CTRL/L to FF, and so one.

Screen and Cursor Control

Teletext Graphics Characters

Table 2.2 shows the teletext graphics characters (128-255) that apply to the
380Z and 480Z normal character sets.

When using teletext graphics characters you should note that:
° For the 3802,
characters in the range 128 to 191 are displayed in grey (low
intensity) on both colour and black and white monitors
L] For the 4803z,

characters 128 to 191 are displayed in grey on black on a black
and white monitor, but in white on black on a colour monitor.

Table 2.2 Teletext graphics characters

I [R R
. ool o ol o ol

e .
= e am .
o R =
I T T I—";
el el el e
o offf o ol o ol o ol
ol el ee e

Screen and Cursor Control

In COS 4.0 ahd 4.2, these characters can be redefined using an escape
sequence (see chapter 3).

Special Graphics Characters

The control characters of table 2.1 (0 to 31 and 127) can be plotted to
give special graphics characters, as shown in table 2.3 and 2.4.

Table 2.3 Special graphics characters (COS 3.0 and 3.4)

oo o8 N o B 1B X
o [00 > n @ v ¢
02 | oA = 12 @ n ¢
o3 _| os 13 g B 8
04 'y oc ¥ 1 @ i [
os H oo £ 5 g o jl
o6 J o § v [l € g
07 o ofF [J 7 - v [§

+ B

Table 2.4 Special graphics characters (other firmware versions)

b 00 o8 [~ 10 T 1B | I
o1 09 P 17 19 | T
oz [] oA E 2 n £
03 © 0B @ 13 4 1B &

04 2 oc o 14 - 1€ 1,
o5 = oD 4 15 T 1D 3
06 - 207 OE + 16 ¥ €y
07 4 OF , 7 17.1 AL

Screen and Cursor Control

These special graphics characters are specified in EMT instructions that
access the screen (see chapter 4), and (in COS 4.0 and 4.2, and in all ROS
versions) by using an escape sequence (see chapter 3).

Special Features

There are some special features which modify characters. These features
are not available in all firmware versions:

. Redefinition of teletext graphics characters (COS 4.0 and 4.2 only).
® Character attributes (COS 4.0 and 4.2 only).
) Alternate characters (ROS 2.2 only).

The teletext graphics characters (128 to 255) can be redefined using an
escape sequence (see chapter 3).

Character attributes can be set with an escape sequence (see chapter 3) to
give underlined characters, dim characters, or reverse-video characters
(black on a white background). In B0-character mode, the automatic dimming
attribute switches off or on the automatic dimming of teletext graphics
characters 128 to 191.

In ROS 2.2 there is an alternate character set that can be selected by the
character attribute escape sequence (see chapter 3). The alternate set has
reverse-video, dimmed, special graphics characters (0 to 31) and ASCII
characters (32 - 126). In COS 4.0 and 4.2, an escape sequence attribute is
provided, but no alternate character set is implemented.

Screen Handling - The OUTC Family

CHAPTER 3

SCREEN HANDLING - THE OUTC FAMILY

This chapter gives details of the OUTC family of EMT instructions. These
instructions are:

L] OUTC, OUTCNV, MSG, and OUTNC
[] CURPOS, GRAFIX, SCROLL, WIDTH, and WINDOW.

The first group are instructions that send characters to the screen. The
second group can be considered as maintenance EMTs that are used to find

the cursor address, to modify scrolling behaviour and screen mode, and to
define window area.

The instructions detailed in this chapter give you a large number of
screen~handling facilities with compatibility between firmware versions.
You are strongly advised to use these instructions in preference to any of
the other screen-handling methods mentioned in this manual.

The first section of the chapter summarizes the OUTC family of instructions
and version differences; the second section gives detailed definitions.
Finally, there are sections on control characters and escape sequences.

SUMMARY OF INSTRUCTIONS AND VERSION DIFFERENCES

Table 3.1 summarises the OUTC family of EMT instructions.

Table 3.1 The OUTC family of EMT instructions

Mnemonic Code (hex) Function
ouUTC 1 (01) Output the byte in register A to the screen
OUTCNV 22 (16) As above but not using a transfer vector
MSG 23 (17) Output a message at (HL) to the screen
QUTNC 42 (2A) Output a byte without clearing the page key
CURPOS 59 (3B) Return the address of the cursor position (x,y)
GRAFIX 13 (0D) Clear the top 20 lines giving a 4~line scroll
SCROLL 14 (0OE) Full screen scroll
WIDTH 52 (34) Change screen mode or return present state
WINDOW 58 (3A) Define window area of the cursor

Screen Handling - The OUTC Family

Table 3.2 gives implementation details and version differences of these EMT
instructions.

Table 3.2 Implementation details and version differences

COsS COs COos cos ROS ROS ROS ROS
Name Code 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
ouTcC 1 + [] + + + + + +
OQUTCNV 22 + ® + + + + + +
MSG 23 * . * * * * * *
OUTNC 42 * ® * * - - - -
CURPOS 59 X X ® * * * * *
GRAFIX 13 + ® + + + + + +
SCROLL 14 * [] + + + + + +
WIDTH 52 X X [] * + + + +
WINDOW 58 X X [] * + + + +

[] Implemented Major changes
* Fully compatible X Not implemented
+ Almost the same

Note that, although OUTC is implemented on all versions, there have been
changes in the control characters that it interprets. Also, escape
sequences were not interpreted until COS 4.0, and there are differences
between COS and ROS escape sequences. See the relevant sections in this
chapter for details. .

DEFINITIONS

ouTC Output the byte in register A to the screen
Decimal code (hex) : 1 (1)
Implementation : COS 3.0 and 3.4
Registers affected : None

OUTC outputs the character given in register A
to the screen at the current cursor position.
The cursor moves one place to the right.

In all firmware versions, OUTC interprets a byte
as ASCII characters (32 to 126, table 2.1 in
chapter 2), and teletext graphics characters
(128 to 255, table 2.2 in chapter 2).

ouTC
modifications

Screén Handling - The OUTC Family

OUTC is unigue in interpreting control
characters (0 to 31 and 127, table 2.1 in
chapter 2); these provide screen and cursor-
handling facilities. There have been changes in
control characters interpretation with firmware
differences. Consult the section on control
characters (later in this chapter) for details.

In COS 3.0 the cursor is bound to the bottom
line.

This instruction is called using a transfer
vector (see chapter 13 for its offset address).

Imglementation : COS 4.0 and 4.2.
All versions of ROS

The instruction automatically takes account of
whether you are in 40 or 80-character mode, and
whether to do ordinary scrolling or (COS 4.0
only) smooth scrolling.

Escape sequence commands are interpreted by ouTC
when ESC (27) is received. The section on
escape sequences (later in this chapter) gives
details.

As above but not using a transfer vector

Decimal code (hex) : 22 (16)

Igglemantation All versions of COS and ROS

Registers affected : None

This instruction works in the same way as above,
except that the call does not use a transfer
vector. In general, the use of this EMT is not
recommended.

Output a message at (HL) to the screen

Decimal code (hex) : 23 (17)
Implementation : All versions of COS and ROS
Registers affected : None

MSG is used to output a string of characters to
the screen starting at the current cursor
position. Register HL must be set to point to
the start of the string; the end must be

Screen Handling - The oOUTC Family

represented by a negative byte (with the most
significant bit set) which is not displayed.

OUTNC Output a byte without losing autopaging characters

Decimal code (hex) : 42 (2n)

Implementation

Registers affected : None

All versions of COS

.-

OUTNC operates in the same way as OUTC except
when autopaging is active (see chapter 2).

When a key is pressed to obtain more text (in
response to the flashing cursor), the character
entered is not cleared from the keyboard latch
(except for <CTRL/A>).

OUTNC Implementation H All versions of ROS
modification
OUTNC is identical to OUTC

CURPOS Returns the address of the cursor position (x, y)

Decimal code (hex) : 59 (3B)

Implementation : COS 4.0 and 4.2.

All versions of ROS

Registers affected : HL

CURPOS returns the address of the cursor
position with respect to the top lefthand corner
of the screen (see chapter 2). Register H
contains the y value, and register L contains
the x value.

GRAFIX Clear the top 20 lines giving a 4~line scroll

Decimal code (hex) : 13 (0D)

Implementation

Registers affected : None

All versions of COS and ROS

GRAFIX clears the top 20 lines of the screen and
confines scrolling to the bottom 4 lines. 1In
COS 4.0 and 4.2, the cursor is moved to the
bottom left of the screen.

Screen Handling - The OUTC Family

There are some version differences:

° In COS 4.0 and COS 4.2, and all versions of
ROS, this instruction works in 40-character
or 80-character mode

° Autopaging is automatically disabled in COS
4.0, COS 4.2, and all versions of ROS, but
not in COS 3.0 and COS 3.4. Consequently,
autopaging should be separately disabled in
the latter versions.

Full screen scroll

Decimal code (hex) : 14 (OE)
Implementation : All versions of COS

and ROS
Registers affected : None

SCROLL restores full screen scrolling. In COS
3.0 and 3.4, and all versions of ROS, the cursor
is unaffected. In COS 4.0 and 4.2, the cursor
is placed at the bottom left of the screen.

This instruction works in 40-character and 80-
character mode.

If autopaging was automatically disabled by the
GRAFIX EMT, it is automatically re-enabled.

Change screen mode or return present state

Decimal code (hex) : 52 (34)
Implementation : COS 4.0 and 4.2
Register affected : A and the flags

WIDTH can be used to change the screen character
mode (in COS 4.0 and 4.2, the cursor in moved to
the bottom left of the screen), or to return the
current mode.

[] To change modes, register A must be set
before entry to WIDTH. If the register
holds 0, the 40-character mode will be
selected; if 1, the 80-character mode will
be selected.

Screen Handling - The OUTC Family

WIDTH
modifications

WINDOW

If the change is from 40 to 80, the 40-
character data is displayed on the lefthand
side of the 80-character screen, and the
righthand side is blank. If the change is
from 80 to 40, each 80-character line is
truncated to become a new-line.

[] To return the current mode, register A must
contain -1 on entry. On return, it will
hold 0 if the screen is in 40-character
mode, and 1 if the screen is in 80-
character mode.

Implementation H All versions of ROS

Registers affected : A, BC, DE and the flags.

WIDTH operates as above, but there is an
additional facility to return the limits of the
current scrolling window. If register A
contains -2 on entry, then, on return, the x, y
limits of the window are held in the B, C, D and
E registers:

° Lower y value (top line) in register B

® Upper y value in register C

® Lower x value (leftmost) in register D

L] Upper x value in register E.

Define window area of the cursor

Decimal code (hex) : 58 (3a)

Implementation H COS 4.0 and 4.2.

All versions of ROS

Registers affected : None

WINDOW defines the area of the screen to which
cursor movement and scrolling are limited.

On entry, registers B, C, D and E must hold the
X, ¥ limits of the window:

® lower y value (top line) in register B
° upper y value in register C
® lower x value (leftmost) in register D

Screen Handling - The OUTC Family

® upper x value in register E.
The following conditions must apply:
0<=B<=C<=23

0<=D<=E<=39 (40-character mode) or
79 (80-character mode)

If any value does not conform, the EMT has no
effect.

In COS 4.0 and 4.2, after the new window has
been defined, the cursor is placed at the bottom
left corner of the window. This occurs no
matter where the cursor was before the call.

In ROS, the cursor remains in the same position
unless it is outside the new window; in this
case, the cursor goes to the top left corner of
the window.

WINDOW works in both 40 and 80-character mode.

Screen Handling - The OUTC Family

CONTROL CHARACTERS

The control characters that are inter
summarized in Table 3.3.
Note that very few were i

used for cursor and screen control.

mplemented in COS 3.0.

pPreted by the OUTC family are
This also shows firmware implementation details.
Most of the characters are

Table 3.3 Summary of the control characters, and firmware implementation
Control ASCII Function COsS COs COS cos Ros ROS ROS ROS
Character Name and 3.0 3.4 4.0 4.2 1.0 Te1 1.2 2.2

Code

CTRL/@ NUL (0) Reserved 'NULL'
CTRL/A SOH (1)
CTRL/B 8TX (2)
CTRL/C ETX (3)
CTRL/D EOT (4) Resume output X [] * * * * * *
CTRL/E ENQ (5)
CTRL/F ACK (6)
CTRL/G BEL (7) Beep x x ® * * * * *
CTRL/H BS (8) Cursor left x [] * * * * * *
CTRL/I HT (9) Tab * [] * * * * * *
CTRL/J LF (10) Cursor down * [] + + + + + +
CTRL/K vT (11) Cursor up X L] + + + + + +
CTRL/L FF (12) Clear screen (BL) * [] * * * L * * *
CTRL/M CR (13) CR + LF * L] * * * * * *
CTRL/N S0 (14) CR * [} * * * * * *
CTRL/O 8I (15) Suppress output X [] * * - * * *
CTRL/P DLE (16)
CTRL/Q DC1 (17) Stop autopaging * [] * * * * b *
CTRL/R DC2 (18) Reverse video on X X [] * X X X X
CTRL/S DC3 (19) Start autopaging * [} * * * * hd -
CTRL/T DC4 (20) Reverse video off X X [] * X X X X
CTRL/U NAK (21) Blinking cursor on X ® * * * * * *
CTRL/V SYN (22) Cursor addressing X [] + + + + + +
CTRL/W ETB (23) Blinking cursor off X L] * * * - * *
CTRL/X CAN (24) Cursor right X L] * * * * * *
CTRL/Y EM (25) Delete to end of line X L] * * * * * *
CTRL/Z SUB (26)
CTRL/ [ESC (27) Start escape sequence X X [] - * * * *
CTRL/ FSs (28)
CTRL/] GS (29) Cursor home X [] * * * * * *
CTRL/ RS (30) Clear to end of screen X L[] * * * * * *
CTRL/ us (31) Cursor home + clear sc. X [] * * * * * *

- DEL (127) Backspace + delete * ® * * * * * *

[] Implemented + Almost the same
* Fully compatible X Not implemented

Definitions
CTRL/D 04 hex

(EOT)

CTRL/G 07 hex
(BEL)

CTRL/H 08 hex
(BS)

CTRL/I 09 hex
(HT)

CTRL/J OA hex
(LF)

CTRL/K 0B hex
(vT)

Screen Handling - The OUTC Family

Resume output

This character causes output to resume, clearing
the effect of CTRL/O which suppresses output.

Sound the Beeper

In all 3802 systems the hardware does not
include a speaker. One can be attached between
pin 6 (beeper) and pin 7 (ground) of the 7-way
DIN socket marked 'Cassette Recorder' on the
rear panel.

Cursor left

This character moves the cursor left one
position. If the cursor was at the beginning of
a line, it moves to the end of the previous
line. If the cursor was.at the beginning of the
top line, it moves to the end of that line, and
the screen contents are scrolled down one line
(not in COS 3.0 or 3.4).

Horizontal tab

The cursor moves right to the next tab position.

Cursor down

The cursor moves vertically down one line. If
this moves the cursor off the screen, the
contents of the screen will be scrolled up one
line (in COS 3.4, this also results in cursor
movement to the beginning of this new bottom
line).

This character is ignored if it immediately
follows a CTRL/M character.

Cursor up

The cursor moves up one line. If the cursor was
on the top line, the contents of the screen will
scroll down one line (except in COS 3.4).

Screen Handling - The OUTC Family

(FF)

CTRL/M
(CR)

(so)

(s1)

(DC1)

(DC2)

CTRL/S
(DC3)

(DC4)

(NAK)

0C hex

0D hex

OE hex

12 hex

Clear screen and move the cursor to bottom left

The screen contents are cleared and the cursor
is positioned at the bottom left of the screen.

Carriage return and line feed

The cursor moves to the beginning of the next
line. If the cursor was on the bottom line, the
screen contents will scroll upwards one line.

This character is ignored if it immediately
follows a "forced" CR/LF (see page 2.2),

Carriage return

The cursor moves to the start of the current
line.

Su ppress O\ltgﬂt

Any character (including escape sequences) sent
to the screen by the OUTC EMT will not appear.
Output is resumed with CTRL/D.

Stop autopaging

This character stops autopaging.

Switch reverse-video on

In COS 4.0 and 4.2, reverse-video (see escape
sequences) is set on.

Start autogaging

This character starts autopaging.

Switch reverse-video off

In COS 4.0 and 4.2, reverse-video is set off.
Blink on

This character starts the cursor blinking when
keyboard input from KBDW or KBDWF (see chapter
5) is expected. The solid white cursor blinks
on and off over any character that is underneath

Screen Handling - The OUTC Family

it. When keyboard input is not expected, no
cursor is visible.

CTRL/V 16 hex Cursor addressing
(SYN)

This character initiates cursor addressing. It
must be followed by two characters which define
the vertical (y) and horizontal (x) cursor
coordinates, respectively. Each of these
characters consists of the cursor y or x
position with decimal 32 added to it.

For example, the top left of the screen is
defined by:

(0 + 32) (0 + 32)

and the bottom right of the screen is defined
by:

(23 + 32) (39 + 32) in 40-character mode
or

(23 + 32) (79 + 32) in 80-character mode.

The coordinates can be defined within a window.
In COS 4.0 and 4.2, the origin is the top
lefthand corner of the window. But, in all
versions of ROS (as in COS 3.4), the origin is
the top lefthand corner of the screen.

Once CTRL/V has been received, the cursor
addressing sequence must be completed.

CTRL/W 17 hex Blink off
(ETB)
This character disables cursor blinking.

CTRL/X 18 hex Cursor right

(CAN)
The cursor moves one space to the right. If the
cursor was at the end of a line it will move to
the start of the next line; the screen contents
will be scrolled upwards, if necessary.

CTRL/Y 19 hex Delete to end of line
(EM)

The screen contents are cleared to the end of
the current line, and the cursor position is
left unchanged.

Screen Handling - The OUTC Family

CTRL/[1B hex
(ESC)

CTRL/] 1D hex
(Gs)

CTRL/4 1E hex
(RS)

CTRL/_ 1F hex
(us)

DELT 7F hex
(DEL)

Start escape sequence

Receipt of this character (in COS 4.0, 4.2 and
all versions of ROS) initiates a command
sequence determined by the bytes immediately
following CTRL/[. Refer to the next section for
descriptions of the escape sequences.

Cursor home
The cursor is moved to the top left corner of

the screen, the home position.

Clear to end of screen

The screen contents are cleared below and to the
right of the cursor. The cursor position is
left unchanged.

Cursor home and clear screen

The screen contents are cleared, leaving the
cursor at the top left corner of the screen.

Backspace and delete

The cursor moves one position to the left and
deletes the character at that position. If the
cursor is already at the left hand edge of the
screen, the cursor does not move, but the
character at the cursor position is deleted.

ESCAPE SEQUENCES

Screen Handling - The OUTC Family

When the control character ESC (27) is received by one of the OUTC family
of EMT instructions (in COS 4.0 and 4.2, and in all versions of ROS), a

command sequence is initiated.

The series of characters which follow ESC

are not sent to the screen; instead other actions take place, as can be
seen from Table 3.4 which summarises the escape sequence commands and

implementation differences.

Table 3.4 Summary of escape sequence commands
Sequence pDefinition of Command
Introducer and Firmware Implementation

COS 4.0 and 4.2

All ROS versions

ASCII
Character Hex Decimal
1 21 33
% 25 37
< 3c 60
= 3D 61
> 3E 62
? 3F 63
Q 40 64

Send a special graphics
character to the screen

Not implemented

Re~define teletext
graphics characters

Screen control (includes
smooth scrolling in COS
4.0 only)

Initialization of
various screen

parameters (see p.3.19)

Define scrolling
window dimensions

Alter sound of beeper

Send a special graphics
character to the screen

pDefine new uses of the
function keypad keys

Not implemented

Screen control
commands

Restore original use of
of function keypad keys

Define scrolling
window dimensions

Alter sound of beeper

Note that the sequence introducer (SI) is referred to in Table 3.4.
is the first of the series of characters which follow ESC.

This
Its value

determines how many subsequent characters can be part of an escape

sequence.

definitions which follow; you will encounter:

Subsequent characters needed for each 81 are listed in the

° a switch (SW) with possible values of "0" (30 HEX) to switch a
feature off or "1" (31 hex) to switch it on

Screen Handling - The ourc Family

° a control parameter (CP) which may take any value given in the
definitions.
Definitions
—— e Ons
SI:33 Send a special graphics character to the screen
(21 hex)
ASCII character H !
———c rtraracter

Implementation H COS 4.0 and 4.2

All versions of ROS

The sequence after the SI is a single byte to be
output directly to the Screen; the characters
0 to 31 and 127 are not interpreted as control
characters but as the special graphics
characters shown in tables 2.3 and 2.4.
For example, the following sequence:

27 33 21

ESC SI character

will send a pi symbol to the screen. (21,
within this escape sequence, represents the pi

symbol)
8I:37 New uses of the function keypad keys
(25 hex)
ASCII character H %
———caracter

Implementation s All versions of ROS

The sequence after the SI is a CP, followed by a
byte (of value n), then n further bytes. The
sequence is used to redefine the character
string that is generated when a function or
arrow key is pressed. The new character string
will be the last n bytes of the escape sequence.

CP = 65 (A) Redefine the up arrow key

CP = 66 (B) Redefine the right arrow key

CP = 67 (C) Redefine the down arrow key

CP = 68 (D) Redefine the left arrow key

CP = 69 (E) Redefine the F1 function key

CP = 70 (F) Redefine the F2 function key

CP = 71 (G) Redefine the F3 function key

CP = 72 (H) Redefine the F4 function key

CP = 73 (1) Redefine the SHIFT/up arrow key
CP = 74 (J) Redefine the SHIFT/right arrow key

CP = 75 (K) Redefine the SHIFT/down arrow key

~

81:60
(3C hex)

Screen Handling - The OUTC Family

CP = 76 (L) Redefine the SHIFT/left arrow key
CP = 77 (M) Redefine the SHIFT/F1 function key
CP = 78 (N) Redefine the SHIFT/F2 function key
CP = 79 (0) Redefine the SHIFT/F3 function key

CP = 80 (P) Redefine the SHIFT/F4 function key
The character string can be of any length from 0
to 127 bytes, but the total number of characters
for all keys is also limited to 127. If the
string is too long, the escape sequence will

have no effect.

This is very useful in high-level languages.
For example, in BASIC:

PUT 27,"%G",4,"RUN",13

redefines the F3 function key so that it
generates the string:

RUN <RETURN>

Re-definition of teletext graphics characters

ASCII character : <
Implementation H COS 4.0 and 4.2

The characters from 128 to 255 are normally the
teletext graphics characters. However, some or
all of them can be redefined.

To define a character requires 12 bytes. A
character is B8 dots wide by 10 deep. The first
10 bytes correspond to the 10 lines of dots.
Every bit which is set will give a dot in the
corresponding position. The 11th and 12th bytes
are used for the underline attribute (see screen
control and character attributes), and replace
lines 9 and 10 when the underline attribute is
on. To define a character, use the escape
sequence:

27, 60, C, b1, b2, b3, b4, b5, b6, b7, b8, b9,
b10, b11, b12

where C is the code of the character to be
defined, and b1 to b12 are the bytes to define
the character. For example, character 192 can
be redefined as the Greek character 'rho' by:

27, 60, 192, 0, 0, 0, 0, 24, 36, 68, 120, 64,
64, 255, 64.

Screen Handling - The OUTC Family

SI:61
(3D hex)

It should be noted that characters which are in
range 128 to 191 automatically appear dim on the
screen, by hardware in 40-character mode and by
software in 80-character mode. It is possible
to switch this feature on or off in 80-character
mode. If automatic dimming is switched off,
then characters which are normally dim will now
be bright. The escape sequence which switches

dimming off is:

27, 61, 48, 75

The graphics character store can be
reinitialized to contain the usual teletext
graphics characters by the escape sequence:

27, 62, 66

Screen control and character attributes

ASCII character : =

Implementation H COS 4.0 and 4.2

All versions of ROS

The sequence after the SI is a SW followed by a
CP:
27, 61, Sw, CP

The CP value controls which feature will be
used; each feature is switched on or off by the
SW value (SW= 1(31 hex) is on; SW=0 (30 hex) is
off). Table 3.5 summarizes the commands and
implementation differences.

For instance, the sequence:
27, 61, 75, 49
Switches on automatic dimming of teletext

graphics characters in 80~character mode (COS
4.0 and 4.2 only).

Screen Handling - The OUTC Family

Table 3.5 Sequence introducers for screen control

Ccp Function Implementation
COs COsS ALL
4.0 4.2 ROS
65 (A) Alternate character set [] * X
66 (B) Underline attribute [] * X
67 (C) Dim attribute L[] * X
68 (D) Reverse-video attribute] * X
70 (F) Front Panel entry [] - *
71 (G) Autopaging [] b *
72 (H) Smooth scrolling [] X X
73 (I) Text in HRG output o * X
74 (J) 40 or 80 character mode [] * *
75 (K) Automatic dimming o * X
76 (L) Alternate character set X X []
[J Implemented X Not implemented
* Fully compatible
The functions referred to in table 3.5 are
defined below:
e smooth scrolling - a slower, but smooth,

(COsS 4.0 only) scrolling speed.
Switched on or off by
typing <CTRL/€@>, or by
the escape sequence.

e underline, dim, - Characters sent to the
reverse video, screen can be
automatic dimming, wunderlined, dimmed, or
(COS 4.0 and displayed as dark on

4.2 only) light (reverse video).

Reverse video can be
switched on by <CTRL/R>
and off by <CTRL/T>.
Automatic dimming
switches off or on the
automatic dimming of
teletext graphics
characters, 128 to 191
(in 80-character mode).

Screen Handling - The OUTC Family

SI:62
(3E HEX)

® switch on or off
the text in high
resolution
graphics output
(COS 4.0 and
4.2 only)

® alternate
characters
(COS 4.0 and
4.2, and ROS
1.0, 1.1, and
1.2)

- Only graphics is

output when text is
switched off.

An escape sequence
attribute is provided
(CP=65 in COS, CP= 76
in ROS) but no
alternate character set
is implemented. If you
attempt to use this
attribute, undefined
results will occur in
COS, and the normal set
will be produced in
ROS.

(ROS 2.2) There is an

alternate character set
that can be selected by
the escape sequence
attribute (SI1=61,
CP=76). This set has
the teletext graphics
characters replaced by
a reverse dim version
of the normal set:

Character Alternate Character

Codes Set

0-31 Special graphics characters,

bright
32-127 ASCII characters, bright
128 Blank

129-159 Special graphics characters,
reverse dim
160-255 ASCII characters, reverse-dim

Initialize character attributes

ASCII character :
Implementation H

>

COS 4.0 and 4.2

The sequence after the SI is a CP only:

l., XV‘ ' L . |

81:62
(3E HEX)

S1:63
(3F hex)

Screen Handling - The OUTC Family

CP=65 (A) clears the current attributes,
clears smooth scrolling (COS 4.0 only),
sets to 80-character mode, places the
cursor at the bottom left of the screen and
initializes the teletext characters to
their usual value

CP=66 (B) initializes the teletext
characters to their usual values

CP=67 (C) clears the current attributes

Initialize and restore function keypad keys

ASCII character H >
Implementation] All versions of ROS

The sequence after the SI is a CP only:

® CP=68 (D) restores all function and arrow

keys to their original values

Define or redefine scrolling window dimensions

ASCII character : ?
Implementation H COS 4.0 and 4.2.

All versions of ROS.

The sequence after the SI is 4 bytes followed by

a Cp:

CP=65 (A).

The 4 bytes define the 4 corner positions
of a scrolling window:

x{lower),x(upper),y(lower),y(upper)
The sequence is:

27, 63, x1, xu, yl,‘yu, cp
(where l=lower, u=upper)

The values must be such that:

0 <=x1 <=xu <=39 (40-character mode)
or

0 <=x1 <=xu <=79 (80-character mode)
and

0 <=yl <=yu <=23.

3.19

Screen Handling - The OUTC Family

SI:64
(40 hex)

® CP = 66 (B)
The 4 bytes define a rectangular area of
the screen to be cleared, with order and

value limits as above.

See also the EMT WINDOW for further information
about windows.

Alter sound of beeper

ASCII character : e
Implementation : COS 4.0 and 4.2.

All versions of ROS

The sequence after the SI is 2 bytes followed by
a CP, which is 41 hex (A):

27, 64, F, 4, 65

The 2 bytes define the frequency (F) and
duration (d) of the sound produced by the
internal loudspeaker (480Z) or the attached
loudspeaker (3802). The desired sound can be
calculated from the formula:

Frequency (kHz) = 1000
54 + 32*F

&

Screen Handling - Other EMT Instructions

CHAPTER 4

SCREEN HANDLING - OTHER EMT INSTRUCTIONS

This chapter gives details of EMT instructions that access the screen
memory and are faster than the OUTC family of EMT instructions. However,
if you use them, you may have problems in firmware compatibility; we
recommend that you use OUTC instructions rather than these EMTs.

A major compatibility problem is caused by differences in hardware between
the 3802 and 4802 machines:

° In the 3802, screen display is held in RAM; this is accessible to
both the monitor circuitry and the CPU, though not simultaneously.
The CPU can access the screen memory at any time, but if this occurs
while information is being written to the screen the picture will be
disturbed. To prevent this happening, the CPU only accesses the
screen memory when nothing is being written to the screen (that is,
during the line and frame blanking periods).

® The 480Z screen memory is mapped as a block of 24 Z80 input/output
ports each corresponding to a line on your screen, and simultaneous
access by both monitor circuitry and the CPU is possible.

These hardware differences (see the Information File manuals for details)
mean that the EMT instructions are in two main groups: one for the 480%,
and the other for the 3802.

In the first section of this chapter, the EMT instructions are summarized
with details of implementation and version differences. The second section
gives definitions.

Screen Handling - Other EMT Instructions

SUMMARY OF INSTRUCTIONS AND VERSION DIFFERENCES

Table 4.1 summarizes the memory-

access, screen-handling EMT instructions.

Table 4.1 Screen-handling (memory access) EMT instructions
Mnemonic Code (hex) Function
VTOUT 55 (37) Output character to screen
VTIN 56 (38) Read character from screen
VTCLR 57 (39) Clear specified area of the screen
VTLINE 60 (3a) Output line or part of line
OPNWT 11 (0B) Open screen for memory access
CLOSE 12 (0C) Close screen
CLEAR 15 (OF) Clear selected screen band
OUTF 43 (2B) Output to screen at (HL) from A rege.
INF 44 (2c) Input from screen at (HL) to A reg.
CHGEN 53 (35) Generate new character pattern
CHREAD 54 (36) Read current character pattern

Table 4.2 gives details of implementation and firmware differences.

Table 4.2 Implementation details and differences
Name Code COs COs Cos cos ROS ROS ROS ROS
3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
VTouT 55 X X ® * - - - -
VTIN 56 X X [] * - - - -
VTCLR 57 X X ® * + + +
VTLINE 60 X X [] * + + + +
OPNWT 11 * ® * * - - - -
CLOSE 12 * [] b - - - N -
CLEAR 15 * ® + + X X X X
OUTF 43 * [] * * X X X X
INF 44 * o * * X X X X
CHGEN 53 X X ® * X X X X
CHREAD 54 X X ° * X X X X
L] Implemented - Major differences
*

Fully compatible
Almost the same

X Not implemented

Screen Handling - Other EMT Instructions

VTOUT, VTIN, VTCLR, and VTLINE access the screen memory. Characters can be
sent to any position on the screen more directly with VTOUT and VTLINE

than they can with OUTC or MSG (see Chapter 3). However, these memory-
access EMT instructions do not interpret the codes 0 to 31 and 127 as
control codes; instead, the special graphics characters shown in Table 2.4
are sent to the screen.

OPNWT, CLOSE, CLEAR, OUTF, and INF are used with COS firmware. They form a
second group that synchronizes access of the CPU to the screen memory
during line and page blanking. INF, OUTF and CLEAR were deleted from ROS
when the new VTOUT, VTIN and VTCLR instructions replaced them. OPNWT and
CLOSE were retained for compatibility, but their only function is to
synchronize the blanking period.

The final two instructions, CHGEN and CHREAD, are implemented only in COS
4.0 and 4.2, 80-character mode.

DEFINITIONS

VTOUT Output character to screen

Decimal code (hex) : 55(37)

Implementation : COS 4.0 and 4.2
Registers affected : None

VTOUT outputs a character to the screen at a
specified address. This instruction works in
both 40 and 80-character mode. Register A
contains the character to be output, and
register HL contains the x, y address: the b4
value (0 to 23) is in H; the x value (0 to 39 or
0 to 79) is in L. If the coordinates are
outside these limits, the instruction has no
effect.

Register E contains the character display
attribute. For normal character display, E
contains zero. To obtain other attributes, set
the appropriate bit:

alternate ROM
underline

dim characters
reverse video
ignored

NWN -0
o e s e e

Screen Handling - Other EMT Instructions

VTOUT
modification

VTIN

VTIN

modification

VICLR

Implementation B All versions of ROS
Registers affected : None

VTOUT works in the same way as described above,
except that there are no character display
attributes in register E.

It works in 40-character mode or 40 and 80-
character mode machines.

Read character from screen

Decimal code (hex) : 56 (38)

Implementation H COS 4.0 and 4.2
Registers affected : A, E, and the flags

VTIN reads a character from the screen at a
specified address. This instruction works in
40 or 80-character mode. Register HL contains
the x, y coordinates of the address: the y value
(0 to 23) is in H; the x value (0 to 39, or 0 to
79) is in L. If the coordinates are outside
these limits, then registers A and E contain
zero on return, otherwise register A contains
the character at the address, and register E
contains the character display attributes
information (see the VTOUT definition).

Implementation : All versions of ROS

Registers affected : A, E and the flags

VTIN works in the same way as described above,
except that, on return, register E contains zero
(a 480Z has no display attributes).

VTIN works in both 40 and 40/80 character mode
machines.

Clear specified area of the screen

Decimal code (hex) : 57 (39)
Implementation H COS 4.0 and 4.2, and

all versions of ROS

Registers affected : None

Screen Handling - Other EMT Instructions

VTCLR clears a specified area of the screen.
This instruction works in 40-character machines
and in 40/80-character machines.

On entry, registers B,~ C, D, and E must hold the
X, y limits of the area:

e lower y value (top line) in register B
e upper y value in register C
e lower x value (left most) in register D
® upper x value in register E
The following conditions must apply:
0 <=B<=C<=23

0 <=D<=E<=39 {(40-character mode) or
79 {80-character mode)

If any value does not conform, the EMT has no
effect.

Those positions on the screen that have been

cleared by this instruction display a blank
character (80 hex).

Output line or part of line

Decimal code (hex) : 60 (3n)
Implementation H COS 4.0 and 4.2, and

all versions of ROS

Registers affected

None

VTLINE outputs a line, or part of a line, to a
specified address. Register HL contains the
start address on the screen (in x, y form); this
does not have to be the start of a line.

Register DE contains the start address of the
string to be output, and register C contains
the number of characters in the string. Output

will stop if the end of the screen line is
reached.

Screen Handling - Other EMT Instructions

OPNWT
modification

CLOSE
modification

Open screen for memory access

Decimal code (hex) : 11 (OB)
Implementation : All versions of COS
Registers affected : None

OPNWT waits for the beginning of a frame
blanking period, then allows the CPU to access
screen memory. The screen will go blank when
screen memory is open to the CPU, so this should
only be done during frame blanking.

Implementation : All versions of ROS
Registers affected : None

A call to OPNWT has no effect other than to wait
for the next frame blanking signal.

Close screen
atTes acreen

Decimal code (hex) : 12 (0C)
Implementation H All versions of COS
Registers affected : None

The screen memory is closed to prohibit access
by the CPU, and to allow the display to be shown
again.

Implementation : All versions of ROS

Registers affected : None

CLOSE is implemented, but does not do anything.

Clear selected screen band

.

Decimal code (hex)

Implementation

Registers affected : A, B, DE and HL, and
the flags.

15 (OF)

COS 3.0 and 3.4

CLEAR clears a number of lines of the screen.
The validity of the arguments is not checked;
consequently, take care or you will get

modification

Screen Handling - Other EMT Instructions

unpredictable results!

On entry, register A contains the number of
lines to be cleared (1 to 24 decimal). Register
pair HL contains the address of the beginning of
the top line of the band to be cleared: a row
number (0 to 23 decimal) and column zero (the
lefthand column) must be specified in the form:

ROW COLUMN
’—'\A’\’W\
(1[1[1[1]o[r[R[R]R[R[0[0[0]0]0]0]
REGISTER H REGISTER L

Only the five R bits will vary, with the top row
(row 0 decimal) represented by 00000, the next
row by 00001, the next by 00010, and so on until
the bottom row (row 23 decimal) which is 10111.

Two examples of this are:

Register A Register HL ' Action

18 hex PRodd e Clears the
(26 GI[\[1[e[o]o[e]o[o[o]e[ol0l0]8] yho1e scroen
decimal) it

ROW 20 DECRSAL
4 hex Tt Clears the
(a (eli[e1Jo[e[o[e[e[o[6]8] ,,erom 4 1ines.
decimal) :

On return, register A contains 0, and register
HL contains the address of the position
following that of the last cleared character. A
blank graphics character (128) is displayed

at all clear positions. The contents of
registers B and DE will be destroyed.

Implementation H COS 4.0 and 4.2

Registers affected 2 A, B, DE, HL and the flags

In COS 4.0 CLEAR does not work, but the contents
of all registers are preserved. In COS 4.2, the
instruction works as before, but only in 40-
character mode.

Screen Handling - Other EMT Instructions

OUTF

CHGEN

Output to screen at (HL) from A register

Decimal code (hex) : 43 (2B)
Implementation H All versions of COS
Registers affected : None

The character in register A is written to the
memory address contained in register pair HL (see
chapter 11) during the line blanking

period.

This instruction only works in 40-character
mode. OUTF is very slow in COS 4.0 and 4.2.

Input from screen at (HL) to register A

Decimal code (hex) : 44 (2C)

Implementation : All versions of COS

Registers affected : A

INF reads the memory location, the address of

which is in register pair HL (see chapter 11),
then places the result in register A. This is
done during line blanking.

This instruction only works in 40-character
mode. INF is very slow in COS 4.0 and 4.2.

Generate new character pattern

Decimal code (hex) : 53 (35)
Implementation H COS 4.0 and 4.2
Registers affected : None

CHGEN generates a new character dot pattern for
any of the teletext graphics characters (80 to
FF hex).

On entry, register A contains the character to
be changed, and register B contains 0 for normal
use (waiting for frame blanking) or 1 for
immediate action (which may make the screen
flicker).

The new dot pattern (see re-definition of
graphics characters in the Escape Sequences

Screen Handling - Other EMT Instructions

section of chapter 3) must be contained in 12
adjacent bytes of memory; the address of the
first byte is held in register DE.

You are advised against redefining character

80 hex (128), as this is used by COS as a
"blank".

Read current character pattern

Decimal code (hex) : 54 (36)

Implementation H COS 4.0 and 4.2
Registers affected : None

CHREAD reads the current dot pattern
for a character in the range 0 to FF hex.

On entry, register A contains the character to
be read, and register B contains 0 for normal
use or 1 for immediate action (which may cause
the screen to flicker). The pattern (see
re-definition of graphics characters in the
Escape Sequences section of chapter 3) will be
output to 12 consecutive bytes of memory. On
entry, register DE must contain the address of
the first byte.

Keyboard Handling

CHAPTER 5

KEYBOARD HANDLING

This chapter describes keyboard handling EMT instructions.

Transfer of data from the keyboard to the CPU is controlled by the
firmware, which converts keyboard strokes into 7-bit, ASCII-coded
information. This has the advantage that key position changes on the
keyboard layout do not cause problems when machines are updated.

In ROS, the interrupt-driven nature of keyboard operation permits the
system to accept keyboard strokes and store some characters until they
are required by the program.

Hardware details of the 380Z and 480Z machines are given in the respective
Information File manuals, but we strongly recommend that you use EMT
instructions for keyboard handling.

The first section of this chapter is a summary of the EMT instructions and
version differences, and the second section gives definitions.

SUMMARY OF INSTRUCTIONS AND VERSION DIFFERENCES

Table 5.1 summarizes the keyboard handling EMT instructions.

Table 5.1 Keyboard handling EMT instructions

Mnemonic Code (hex) Function
KBDTL 31 (1F) Test keyboard for depression (key stroke)
KBDW 33 (21) Wait for character, read it, clear keyboard
KBDWF 34 (22) As KBDW plus test for entry to Front Panel
KBDC 2 (02) Read the keyboard, trap <CTRL/C>
KBDIN 29 (1D) Read and clear the keyboard
KBDTC 30 (1E) Test the keyboard, return character
KBDTF 32 (20) Test the keyboard for entry to Front Panel

Keyboard Handling

Table 5.2 gives implementation details and version differences.

Table 5.2 Implementation details and differences
Name Code cos cos Ccos cos ROS ROS ROS ROS
3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
KBDTL 31 N ® * b * o hd
KBDW 33 * Py * * * * * *
KBDWF 34 * o * * * * * *
KBDC 2 * o * * * * * *
KBDIN 29 * ° * * + + + +
nm 3 0 * e * * * * * *
KBDTF 32 * ® * * x x x x
® Implemented + Almost the same

* Fully compatible X

Not implemented

The three instructions at the top of these tables, KBDTL, KBDW, and KBDWF,

are the most useful ones.
other five, wherever possible.

We recommend that you use these, rather than the

KBDTL returns control to the program whether a key has been pressed or not.
This is useful, since your program can find a character, if one is present,
or do something else if a character is not present.

KBDW and KBDWF wait for a key to be pressed before returning to the program

with the keyed-in character.

Several of the instructions involve the autopaging flag.
the flags involved, are discussed in chapter 2.

Autopaging, and
In all versions of ROS,

<CTRL/A> takes effect immediately, irrespective of any keyboard EMT

instructions.

DEFINITIONS

KBDTL

Test keyboard for depression (Key stroke)

Decimal code (hex)

Implementation

Registers affected

31 (1F)
All versions of COS and ROS

A and the flags

Keyboard Handling

KBDTL reads the keyboard without clearing the
character:

° If no character has been keyed in, or if
<CTRL/A> has been entered, then it returns
0 in register A and sets the zero flag.

) If any character (except <CTRL/A>) has been
keyed in, it returns -1 in register A and
clears the zero flag.

If <CTRL/A> is entered, the autopaging flag is
switched (see chapter 2).

This instruction is called using a transfer

vector, except in COS 3.0 (see chapter 13 for
its offset address).

Wait for a character, read it, clear the keyboard

Decimal code (hex) : 33 (21) .

Implementation : All versions of COS and ROS

Registers affected : A

KBDW waits for a character to be keyed-in. When
this happens, the character is returned in
register A with the flags undefined.

If <CTRL/A> is keyed in, the autopaging flag is
switched (see chapter 2).

If the blink-on facility (see chapter 3) is in

operation, KBDW causes the cursor to blink while
it is waiting.

As KBDW plus test for entry to Front Panel

Decimal code (hex) : 34 (22)

Implementation : All versions of COS and ROS

Registers affected : A and the flags

KBDWF does the same as KBDW, except that it
enters the Front Panel if you key in <CTRL/F>.
Program context is not lost; if you leave the
Front Panel with the K command, COS/ROS will re-
enter the calling program.

As with KBDW, <CTRL/A> switches the autopaging

Keyboard Handling

KBDIN

flag (see chapter 2), and the cursor will blink
during a call to KBDWF if blink-on (see chapter
3) is set.

This instruction is called using a transfer
vector (see chapter 13 for its offset address).

Read the keyboard, trap <CTRL/C>

Decimal code (hex) : 2 (02)

Implementation : All versions of COS and ROS

Registers affected : A and the flags

KBDC reads the keyboard. If a character is
there, it is returned in register A and the Z
flag is cleared. If there is no character, 0 is
returned in register A and the Z flag is set.
The keyboard is cleared.

If <CTRL/C> is keyed in, it is trapped. CP/M or
CP/NET is re-loaded, if present; otherwise
command returns to COS/ROS.

This instruction is called using a transfer

vector (see chapter 13 for its offset address).

Read and clear the keyboard

Decimal code (hex) : 29 (1D)

Implementation : All versions of COS and ROS

Registers affected : A and the flags

KBDIN reads the keyboard. It returns the
character in register A and clears the 3Z flag,
or, if there is no character, it returns 0 in
register A and sets the Z flag. The keyboard is
cleared.

In ROS, if <CTRL/A> has been keyed-in, it is not
returned.

Keyboard Handling

Test keyboard and return character

Decimal code (hex) : 30 (1E)
Implementation : All versions of COS and ROS

Registers affected : A and the flags.

KBDTC reads the keyboard without clearing it.

If a character is available, it is returned in
register A and the Z flag is cleared.

Otherwise, 0 is returned in register A and the 2
flag is set.

If <CTRL/A> is keyed in, the autopaging flag is
switched (see chapter 2).

Test the keyboard for entry to Front Panel

Decimal code (hex) : 32 (20)
Implementation : All versions of COS

Registers affected : None

KBDTF tests for the <CTRL/F> and <CTRL/A>
characters. If they have not been keyed in,
KBDTF returns without clearing the keyboard, and
without affecting any registers.

If <CTRL/F> is keyed in, the Front Panel is
entered and the keyboard is cleared; if you
leave the Front Panel with the K command, COS
will re-enter the calling program.

[

Printer and Interface Handling

CHAPTER 6

PRINTER AND INTERFACE HANDLING

This chapter gives details of EMT instructions that support printer and
interface handling.

There is an introductory section that gives details of parallel and serial
interfaces in 380Z and 480Z machines. The second section summarizes the EMT
instructions and version differences. Finally, there is a definitions
section.

INTRODUCTION

The 380Z and 480Z machines have hardware differences in their interfaces
(see the appropriate Information File manuals), but both COS and ROS have a
parallel interface, known as the user I/0 port. This has input and output
capability, though sufficient firmware for output only.

Table 6.1 summarizes the RS232 serial interfaces in the 3802 and 480%.

Table 6.1 Summaries of the RS 232 serial interfaces

Ccos ROS

Interface Input Output Input Output
SI0-1 N Y X X
S§10-2 N Y N b 4
SI0-2B N Y X X
S10-4 Y Y Y Y
SI0-5 N Y X X
S10-6 N Y X X

Y Software support N No software support

X No hardware

Printer and Interface Handling

In the 380Z, the SIO-4, SIO-5, and SIO-6 interfaces use the I/0 ports shown
in Table 6.2 (see also appendix C).

Table 6.2 380Z interface I/O ports

Version SI10-4 S10-5 SI0-6
COS 3.0 + 3.4 (cassette) c8 E8 48
COS 3.0 + 3.4 (disc) F E8 cs8 48
and COS 4.0 M cs E8 48
cos 4.2 E4 c8 48

In COS 3.0, 3.4, and 4.0, these interfaces use an Intel 8251A chip. In COS
4.2, the SIO-5 and SIO-6 interfaces use the same type of chip, but the SIO-
4 interface uses a 280~SIO chip.

The 480Z I/0 ports can be found in appendix C.

SUMMARY OF INSTRUCTION AND VERSION DIFFERENCES

Table 6.3 summarizes the printer and interface-handling EMT instructions.

Table 6.3 Printer and interface~handling EMT instructions

Mnemonic code (hex) Function

LPOUT 5 (05) Output byte in reg. A to interface
ouT1 6 (06) Spare output EMT using transfer vector
ouT2 7 (07) As OUT1

IN1 8 (08) Spare input EMT using transfer vector
IN2 9 (09) As IN1

IN3 10 (oa) As IN2

SETLST 41 (29) Set printer from registers A and E
S4KTL 47 (2F) Test SIO-4 interface for a character
S4KIN 48 (30) Read SIO-4 interface into reg. A
LPSTAT 50 (32) Check that printer is ready

Printer and Interface Handling

Table 6.4 gives implementation details and version differences.

Table 6.4 Implementation details and differences

COS COs Cos cos ROS ROS ROS ROS
Name code 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
LPOUT 5 * P * * * * * *
OUT1 6 * ° * * * * * *
ouT2 7 * P * * * * * *
IN1 8 * Py * * * * * *
IN2 9 * P * * * * * *
IN3 10 * P * * * * * *
SETLST 41 * * * + + + + +
S4KTL 47 * o * + * * + +
S4KIN 48 *] * + * »* + +
LPSTAT 50 X . * * * * * *
° Implemented + Almost the same
* Fully compatible X Not implemented

LPOUT handles interface outputs; an 8-bit character (see the ASCII code,
table 2.1 in chapter 2) is sent to an interface selected by the SETLST
instruction. LPSTAT allows you to check that the selected printer, or
other device, is ready.

CAUTION: If you send a control character to a printer (with the LPOUT

instruction), consult your printer manual for details of
control-character interpretation.

The two instructions, S4KTL and S4KIN, handle input at the SIO-4 interface.
The former checks that a character is available; the latter reads and
returns a 7-bit character.

DEFINITIONS
LPOUT Output byte in register A to interface
Decimal code (hex) : 5 (05)
Implementation s All versions of COS
and ROS
Registers affected : None

Printer and Interface Handling

ouT1

ouUT2

This instruction sends an 8-bit character (see
table 2.1, chapter 2) in register A to the
currently selected interface; interface
selection is done with the SETLST instruction.

This instruction is called using a transfer
vector (see chapter 13 for its offset address).

Undefined output EMT linked to I/0 channel

Decimal code (hex) : 6 (06)

Implementation : All versions of COS
and ROS

Registers affected : Undefined

This is a spare instruction that can be defined
by you.

This instruction is called using a transfer
vector (see chapter 13 for its offset address).

Undefined output EMT

Decimal code (hex) : 7 (07)

Implementaton B All versions of COS
and ROS

Registers affected : Undefined

As OUT 1

Undefined input EMT linked to I/0 channel

Decimal code (hex) : 8 (08)

All versions of COS

Implementation

R and ROS
Registers affected : Undefined
As OUT1
Undefined input EMT
Decimal code (hex) : 9 (09)

All versions of COS
and ROS

Implementation

Printer and Interface Handling

Registers affected :

As IN1

Undefined input EMT

Decimal Code (hex) :

Implementation :

Registers affected :

As IN1

Undefined

10 (On)

All versions of COS
and ROS

Undefined

Set printer from registers A and E

Decimal code (hex) :

Implementation H

Registers affected :

This instruction sets

41 (29)
All versions of COS
None

up a printer or other

device by connecting the LPOUT and LPSTAT
instructions to the appropriate interface, and
by performing any necessary initialization.

On entry, register A holds the interface code,
and register E holds the baud rate code (where
appropriate). Interface and baud rate codes are

given in table 5.3(a)

and (b), respectively.

Table 5.3(a) Interface codes

Code

Interface
(in register A)

b WN = O

Monitor screen
SI1I0-1
S10-2

parallel
SI10-4
S10-5
SI1I0-6

Printer and Interface Handling

Table 5.3(b) Baud rate codes

Code Baud rate

(in register E)

110
300
600
1200
2400
4800
9600

AW N 2O

For

example, if you want to connect a serial

printer (operating at a baud rate of 4800) to

the

SIO-4 interface, you would put 4 in register

A and 5 in register E.

Details of the baud rate limits for specific
interfaces are given below:

Interface 0 is the monitor screen which
does not require a baud rate.

The SIO-1 interface does not require a baud
rate. The setting is changed in the
hardware (a bank of switches on the board).

The SIO-2 interface requires a baud rate,
but it cannot operate above 2400 baud.

The user I/0 port is used for printers with
a parallel interface, and a baud rate is
not required.

If an error condition exists, COS (not 4.2)
will display the message:

Attend to printer!
Possible causes of error are:

= Printer not switched on.

- Printer plugged into the wrong socket.

- Wrong type of connecting cable.

=~ Printer out of paper.

- Printer not selected by a select or
online switch on the printer.

SETLST
modification

S4KTL
modification

Printer and Interface Handling

e The SIO-4, SIO-5, and SIO-6 interfaces
handle baud rates of up to 9600
baud.

The default setting for SETLST is that all
output (from the LPOUT instruction) goes to the
monitor screen. If you press the reset button,
output will be re-directed to the screen.

In COS 4.2, the SETLST instruction is called
using a transfer vector (see chapter 13 for its
offset address).

Implementation H All versions of ROS

Registers affected : None

The interface codes, placed in register A, are
restricted to 0, 2, 3, or 4.

Only ROS 1.0 displays an error message if an
error condition exists with the parallel
interface.

In ROS 1.2 and 2.2, the instruction is called

using a transfer vector (see chapter 13 for its
offset address).

Test SIO-4 interface for a character

Decimal code (hex) : 47 (2F)

Ccos 3.0, 3.4 and 4.0;
ROS 1.0 and 1.1

Implementation

Registers affected : A and the flags

This instruction checks the SI0-4 serial
interface, and either returns -1 (FF hex) in
register A with the zero flag cleared if a
character is available, or returns 0 in register
A with the zero flag set. The interface must
have been initialized previously, by calling the
routine SETLST.

Implementation : COS 4.2, and ROS 1.2
and 2.2

The instruction is called using a transfer
vector (see chapter 13 for its address)

Printer and Interface Handling

S4KIN

S4KIN
modification

LPSTAT

Read the SI0-4 interface into register A

Decimal code (hex) : 48 (30)
Implementation B COS 3.0, 3.4 and 4.0;

ROS 1.0 and 1.1

Registers affected : A and the flags

This instruction reads the SIO-4 serial
interface, and returns the first available
character in register A, stripping off the most
significant (parity) bit.

This routine does not return to your program
until a character is available; so, to prevent a
possible "locking up" of the Program, a call to
S4KTL should be made first to ensure that a
character is waiting. S4KIN assumes that the
interface has been previously initialized.

Implementation : COS 4.2, and ROS 1.2

and 2.2

This instruction is now called using a transfer
vector (see chapter 13 for its offset address).

Check that the printer is ready

Decimal code (hex) : 50 (32)
Implementation H All versions of COS

except COS 3.0. All
versions of ROS.

Registers affected : A and the flags

This instruction checks that the device set up
bj the SETLST instruction is ready to receive a
character. If it is, -1 is returned in register
A; if not, 0 is returned and the zero flag is
set.

The LPSTAT instruction is useful in preventing a
lock up, which results when LPOUT calls a
printer that is not ready.

The LPSTAT instruction is called using a
transfer vector (see chapter 13 for the offset
address).

Cassette handling

CHAPTER 7

CASSETTE HANDLING

This chapter gives details of EMT instructions for cassette input and
output. These instructions can be used to read and write bytes of data on
cassette, and to set cassette transfer speed.

Details of data and program formats on cassette tape are provided in the
3802 and 480Z Information File manuals.

Use of a cassette recorder other than the type supplied by Research
Machines can cause problems. If the recorder has phase inversion between

its input and output, it will not work. Consult the Information File
manuals for details.

The first section of this chapter is a summary of the EMT instructions and
version differences, and the second section gives definitions.

SUMMARY OF INSTRUCTIONS AND VERSION DIFFERENCES

Table 7.1 summarizes the cassette-handling EMT instructions.

Table 7.1 Cassette-handling EMT instructions

Mnemonic Code (hex) Function

PUTBYT 3 (03) Output byte in register A to tape
GETBYT 4 (04) Read byte from tape to register A
GETSYN 17 (11)

Get synchronization character in register
A from tape

SETCAS 40 (28) Set transfer speed from register A

CASCTL 63 (3F) Initialize the cassette system

Cassette handling

Table 7.2 gives implementation details and version differences.

Table 7.2 Implementation details and differences

Name Code Cos Ccos cos Cos cos ROS ROS ROS ROS
3.0 3.4/C 3.4/M+F 4.0 4.2 1.0 1.1 1.2 2.2

PUTBYT 3 * ® * - - - - - -
GETBYT 4 * [* - - - - - -
GETSYN 17 * [] * X X + + + +
SETCAS 40 * ® - X X * * * o
CASCTL 63 X X X X X ® * * *

® Implemented - Major differences

* Fully compatible X Not implemented

+ Almost the same

CASCTL was introduced with ROS to initialize and control cassette input and
output operations. Consequently, COS and ROS are incompatible for such
operations.

Although PUTBYT and GETBYT are present in COS 4.0 and 4.2, these two
firmware versions do not support cassette operations.

Data Transfer Rate

SETCAS can be used to set the data transfer rate between fast (1200 baud)
and slow (300 baud). This instruction is not fully implemented in COS
3.4/M and F, To change the transfer rate for these two versions, you must
use the utility program, SCASS, which is on your CP/M operating system
disc. After SCASS has been run, the transfer rate remains effective until
the reset button is pressed, or until FILEX or SCASS is run again.

Note that the FILEX program contains its own slow handler for the cassette
system, so SCASS is not necessary in this case.

DEFINITIONS

PUTBYT

modifications

Cassette handling

Output the byte in register A to tape

Decimal code (hex) : 3(03)
Implementation : COS 3.0 and 3.4
Registers affected : None

PUTBYT outputs the character in the A register to

tape. The character is output immediately with
no imposed file structure; this means that it
will be difficult to find a given character when
reading from tape.

This instruction is called using a transfer
vector, (see chapter 13 for its offset address).
Implementation : COS 4.0 and COS 4.2
Because these versions do not support cassette
operations, the transfer vector is initialized

to break to the Front Panel.

Implementation : All versions of ROS

CASCTL must be called before any call to PUTBYT.

Read byte from tape into register A

Decimal code (hex) : 4 (04)
Implementation : COs 3.0 and 3.4
Registers affected : A and the flags

GETBYT returns the next character read from the
tape into register A. The instruction returns
information when a character has been read from
the tape, or when a control character is entered
at the keyboard.

A character from tape is returned in register A,
and the carry flag is cleared. For a keyboard-
entered character, the carry flag is set and A is
undefined.

This instruction is called using a transfer
vector (see chapter 13 for its offset address).

Cassette handling

GETBYT
modifications

Implementation H COS 4.0 and 4.2

Because these versions do not support cassette
operation, the transfer vector is initialized to
break to the Front Panel.

Implementation : All versions of ROS

CASCTL must be called before any call to GETBYT.

Get synchronization character from tape

Decimal code (hex) 17(11)

COS 3.0 and 3.4. All
versions of ROS

Implementation

Registers affected : The flags

GETSYN searches for a synchronization character
which marks the beginning of a block of data on
tape. Register A must contain the
synchronization character before entry to the
instruction.

First, a search is made for an inter-record gap
(240 cycles of 2.4 kHz tone, or 100 msec of no
recorded information). On finding a gap, the
next character is compared with the
synchronization character. The instruction
returns to the calling program if a match
occurs. Otherwise the search for an inter-
record gap continues.

This procedure accurately defines the beginning
of a block of information and the tape can be
started and read from rest, with no generation
of erroneous characters.

For BASIC, BASLOAD, BASDUMP, TXED, and FILEX,
the cassette file system format uses 16 hex as
the synchronization character; COS and ROS use
4D hex.

While GETSYN is in operation, the keyboard is
constantly monitored. You can abort in COS 3.0
and 3.4 by keying a control character, and in
ROS 1.2 and 2.2 by entering <CTRL/Z>. You
cannot abort in ROS 1.0 and 1.1. If you abort,
GETSYN returns to the calling program with the
carry flag set. Otherwise, the carry flag is
reset when GETSYN exits.

Cassette handling

This instruction is called using a transfer
vector (see chapter 13 for its offset address).

Set data transfer speed from register A

Decimal code (hex) : 40 (28)

Implementation H COS 3.0 and 3.4. All
versions of ROS
Registers affected : A

SETCAS is used to set the data transfer speed
between fast (1200 baud) and slow (300 baud).
The two least significant bits in register A
control the speed of input and output. Bit 0
(least significant) is set for fast input and
reset for slow input. Bit 1 (next least
significant) is set for fast output, and reset
for slow output.

On entry, bits 0 and 1 of register A hold the
desired speed settings. The old settings are
returned in A. In COS 3.4/M or F, the value 3 is

always returned because both input and output
are fast.

Initialize the cassette system

Decimal code (hex) : 63 (3F)

Implementation All versions of ROS

Registers affected : None

The cassette system is initialized by CASCTL.
It is not necessary to call CASCTL before every
invocation of GETBYT or PUTBYT; but you must
call CASCTL before you start.

When you have finished cassette operations, call
CASCTL with register A containing 0 (failure to
do so will disable any currently-selected
hardware and software printer option, and
machine operation will be slowed down).

If you have a dual cassette controller, the
initialization by CASCTL is:

® Before using GETBYT, register A must
contain 1. This switches on the
appropriate cassette controller.

Cassette handling

® Before using PUTBYT, register A must
contain 2. Again, the appropriate motor
is switched on.

You can abort a tape read or write operation by
entering <CTRL/SHIFT/8> or <CTRL/SHIFT/9>. This
activates an automatic call to CASCTL to stop
the cassette recorder.

Disc Handling

CHAPTER 8

DISC HANDLING

This chapter describes disc~handling EMT instructions. These instructions
can be used to read and write sectors of data on a disc. However, you must
never use these EMT instructions under CP/M.

There are several forms of disc system; these are summarized in Table 8.1.

Table 8.1 Summary of disc systems

Firmware
Version Disc Systems
cOos 3.0/M
cos 3.0/F 5.25-inch diameter (Mini) or 8-inch diameter (Full) discs.
COS 3.4/M Single (data) density.
COS 3.4/F Floppy disc controller (FDC) board.
Ccos 4.0/M
COSs 4.0/F
(3802)
Ccos 4.2 5.25-inch diameter or 8-inch diameter discs.
(3802z-D) Double (data) density. Quad density(5.25-inch only).
Intelligent disc controller (IDC) board.
ROS 1.2 5.25=-inch diameter discs.
ROS 2.2 Double and quad (data) density.
(480z) Intelligent disc controller (IDC) board.

The sign-on message for COS 3.0, 3.4 and 4.0 displays either the suffix, M,
denoting a mini system (5.25-inch diameter discs), or F, denoting a full
(8-inch diameter discs) system. In COS 4.2, there are no suffixes for disc

size.

The 4802 uses only 5.25-inch diameter discs.

Other differences between the systems are outlined in the introduction
section; this is followed by a section that summarizes the FDC board EMT
instructions and the IDC board EMT instructions. Finally there is a
definitions section.

Disc Handling

INTRODUCTION

Systems using an FDC board are considered first, then systems using an IDC
board.

FDC Board Systems

These systems (see table 8.1) use single (data) density discs. Details of
tracks, sectors and data space for each disc size are given in table 8.2.

Table 8.2 Single-density disc details

Disc Diameter
5.25~-inch 8=-inch

Tracks 40 (numbered 0 to 39) 77 (numbered 0 to 76)
per side

Sectors 16 (numbered 1 to 16) 26 (numbered 1 to 26)
per track

Bytes 128 128
per sector
Data space 80 Kbytes 250 Kbytes

per side

The FDC board EMT instructions read or write one sector at a time on
single~-density discs.

IDC Board Systems

These systems (see table 8.1) use double (data) density discs. Table 8.3
gives details of tracks, sectors, and data space for each double-density
disc size.

Disc Handling

Table 8.3 Double and quad-density disc details

Disc Diameter

5.25 inch 8 inch

Tracks Double: 40 (numbered 0 to 39) 77 (numbered 0 to 76)
per side Quad: 80 (numbered 0 to 79)

Sectors 9 (numbered 1 to 9) 26 (numbered 1 to 26)
per track
Bytes 512 256

per sector

Data space 180 Kbytes (double) 500 Kbytes
per side 360 Kbytes (quad)

There are 11 IDC EMT instructions that allow physical and logical read and
write operations on single or double-density discs. To understand logical
operations, physical and logical sectors must be defined:

® A physical sector : A portion of track on the disc surface that is
accessed during a read/write operation (the sectors in tables 8.2
and 8.3)

® A logical sector: A block of 512 bytes of data is read/written
regardless of disc size or density (that is, regardless of physical
sector size); each block is sub-divided into four 128-byte units in
a buffer on the IDC board, and each of these data units is known as a
logical sector. See figure 8.1 below.

128 bytes

512 bytes bo{jnonm the disc

Figure 8.1 Logical sectors

Disc Handling

Consider a logical-read operation on an 8-inch diameter, double-density
disc. The physical sector is 256 bytes (from table 8.3), but the logical
operation reads 512 bytes (2 physical sectors). These 512 bytes are split
into 4 logical sectors. Consequently, for this type of disc, there are two
logical sectors per physical sector.

The connection between the two types of sector on any type of disc can be

worked out in this way. Table 8.4 summarizes the number of physical and
logical sectors on each type of disc.

Table 8.4 Physical and logical sector numbers

Number of Sectors
5.25-inch diameter discs 8-inch diameter discs
Single- Double or quad Single- Double-
density density density density
Physical
Sector 16 9 26 26
Logical
Sector 16 36 26 52

Appendix B gives further details of logical sectors and disc formats.

Logical Operations

To show the relationship between physical and logical sectors, we will take
the case of a logical-read operation on a 5.25-inch diameter, double-
density disc, see Figure 8.2.

If you are reading the file sequentially, the first read-operation takes
512 bytes, or 1 physical sector. The 512 bytes are split into 4 logical
sectors. ’

Disc Handling

512 byhs

The 512 bytes of the first physical sector

s
S) N are put in a buffer of the IDC board:

P

These are now logical sectors
1 to 4.

Your program asks for logical
sector 1. This sector is copied
from the buffer.

Your program asks for logical
sector 2. As this is in the
buffer, there is no need to read

Wy

f

data from the disc. Logical
'EF'“L sectors sector 2 is copied from the
in one tmck buffer.
ef the disc

Figure 8.2 Logical-read operation

If, however, your program now asks for logical sector 5, the IDC notes that
it is not in the buffer. Consequently, another buffer is needed to read in
the next 512 bytes (physical sector 6 in figure 8.2).

The buffers are maintained by a list of pointers in an order roughly
correspondlng to "least recently used". When a buffer is accessed it is
marked "most recently used".

When all sectors from a buffer have been accessed (either read or write),
the buffer is written to disc (if a write operation), then made into the
"least recently used". This buffer would be the one most likely to be
used next time.

If no "clean" buffers are available when needed, the "least recently used”
one will be used, and (if necessary) its contents will be flushed to disc.

Flushing is the act of clearing a buffer that has write-data in it. This
512-byte block of data in the buffer is written to the disc (in its
original data density) at the specified logical sector number positions.

Precautions To Be Taken When Using Logical Operations

It is not difficult to see that, if data is left in buffers, there is a
danger of flushing on to the wrong disc. If the disc is changed, and then
buffers are flushed, two problems will occur:

® The wrong data will be written on to the new disc, overwriting data
on that disc.

Disc Handling

® The right data will not be written on the old disc.

To avoid this kind of event, always use the EMT instruction FLUSH before

you change discs. But if you have changed discs, never then use EMT
instruction FLUSH; this would be catastrophic.

It is also good practice to use the EMT INISYS before any logical
operations on a newly inserted disc, because this EMT will initialize the
buffering system on the IDC board so that there is no valid data remaining
in the buffers.

NOTE: With logical operations, sequential data access is very fast; if you
use random access, data access is not so fast.

Sector Parameter and Information Addressing

Both the FDC and the IDC EMT instructions require that you place
information (sector parameters, read/write information) in RAM (see the
definitions section). You should make sure that you have allotted
sufficient memory space for the data to be handled.

Information is handled in sector units, but, as you will have seen from the
previous sections, these units are not standard. Logical operations
require least memory for information (128 bytes); physical operations
require 128 bytes for single-density discs, but 256 or 512 bytes for
double-density discs.

Disc Handling

SUMMARY OF INSTRUCTIONS AND VERSION DIFFERENCES

Table 8.5 summarizes the disc-handling EMT instructions, and table 8.6
gives implementation details plus version differences.

Table 8.5 Disc EMT routines

Mnemonic Code (hex) Function
FDC INIT 25 (19) Initialize disc drive
INSTRUCTIONS RDSEC 26 (1a) Read single-density, physical sector
WRSEC 27 (1B) Write single-density, physical sector
WRCHK 28 (1C) Write & check single-density, physical sector
BOOT 49 (31) Perform a cold bootstrap
IDe INISYS 64 (40) Initialize disc system

INSTRUCTIONS RDSECP 65 (41) Read physical disc sector
WRSECP 66 (42) Write physical disc sector
WRCHKP 67 (43) Write & check physical sector
RDSECL 68 (44) Read logical sector
WRSECL 69 (45) Write logical sector
WRCHKL 70 (46) Write & check logical sector
FLUSH 71 (47) Flush buffers
RDINFO 72 (48) Read disc drive information
FORMAT 73 (49) Format disc track
VERTRK 74 (4A) Verify format of disc track

Table 8.6 Implementation details and version differences

Name Code COS COS COS CO0S ROS ROS ROS ROS
3.0 3.4 4.0 4.2 1.0 1.1 1,2 2.2

INIT 25 * [] * + - - * *
RDSEC 25 * ® * + - - + +
WRSEC 27 * [] * + - - + +
WRCHK 28 * [] * + - - + +
BOOT 49 * [* + - - * *
INISYS 64 X X X [] X X * *
RDSECP 65 X X X ® X X * *
WRSECP 66 X X X [] X X * *
WRCHKP 67 X X X [] X X * *
RDSECL 68 X X X ® X X * *
WRSECL 69 X X X ® X X * *
WRCHKL 70 X X X L] X X * *
FLUSH 71 X X X L] X X * *
RDINFO 72 X X X ® X X * *
FORMAT 73 X X X ® X X * *
VERTRK 74 X X X ® X X * *

[] Implemented + Almost the same

* Fully compatible X Not implemented

- Major differences

Disc Handling

With COS 3.0, 3.4 and 4.0, the FDC instructions will access an FDC board to
read and write single-density data. With COS 4.2, FDC instructions will
access the IDC board and use single-density data transfers.

IDC instructions (which do not exist in FDC-based systems) will read and
write discs in single or double data density. IDC instructions are faster
than FDC instructions.

All instructions, except BOOT in COS versions, are called using transfer
vectors (see chapter 13 for the offset addresses).

DEFINITIONS

The first two sections provide definitions of the FDC EMT instructions and
the IDC EMT instructions, respectively. Error and exceptional condition
codes, common to all IDC instructions, are defined in the third section.

FDC EMT Definitions

INIT Initialize disc unit

Decimal Code (hex) : 25 (19)

Implementation : All versions of COS;
Registers affected : A and the flags

INIT initializes a specific disc drive, the
unit number of which is held in the memory
location addressed by register IX.

On return, if the call is successful,
register A will contain 0 and the zero flag
will be set.

If unsuccessful, a bit is set in register A,
signalling an error:

® bit 7 = Not ready
e bit 4 = No track 00 signal

Versions earlier than COS 4.2 fold the
drive number into the range 0 to 3.

INIT Implementation : ROS 1.2 and 2.2
modification
An additional error can occur. If the
parameter is out of range, the zero flag is
clear, the carry flag is set, and bit 5 is
set.

Disc Handling

Read sector

Decimal code (hex) : 26 (1A)
Implementation : All versions of COS;

ROS 1.2 and 2.2

Registers affected : A and the flags

RDSEC reads a sector from a 48 track per
inch (tpi) disc off either a 48 tpi or a
96 tpi drive.

The parameters of the sector to be read
are contained in a 5-byte block of memory,
as shown below. The address in register
IX points to the first of these bytes:

IX => DEFB UNIT (1 byte)
DEFB TRACK (1 byte)
DEFB SECTOR (1 byte)
DEFW ADDRESS (2 bytes)

The first byte, labelled UNIT, specifies
the disc drive (A, B, C, or D) to be
accessed:

00 hex = A
01 hex = B
02 hex = C
03 hex = D

The second byte, labelled TRACK, specifies
the track number. With an FDS system, the
range is 0 to 76 (0 to 4C hex); with an MDS
system the range is 0 to 39 (0 to 27 hex).

The third byte, labelled SECTOR, specifies
the sector number. It ranges from 1 to
26 (1 to 1A hex) with an FDS system, and 1
to 16 (1 to 10 hex) with an MDS system.

The 2 bytes labelled ADDRESS specify the
memory address at which the data read from
the sector will be stored.

On exit, if no error has occurred, register
A contains 0 and the zero flag will be set.
If an error has occurred, a bit is set in
register A:

Disc Handling

® Bit 7 = Drive not ready
® Bit 4 = Sector not found/seek

error —
® Bit 3 = CRC error

® Bit 2 = Data lost

RDSEC Implementation : ROS 1.0 and 1.1

modification
The transfer vector used for calling this
instruction is initialized to break to -
Front Panel.

WRSEC Write sector, no check
Decimal code (hex) : 27 (1B)
Implementation : All versions of COS;
ROS 1.2 and 2.2 s
Registers affected : A and the flags
WRSEC writes to a specified sector on a 48
tpi disc (with 48 or 96 tpi drives). o

The parameters are defined in the same way
as described in RDSEC definition, except

that the two ADDRESS bytes contain the
memory address at which the data to be o
written is stored.
On exit, if no error has occurred, register
A contains 0 and the zero flag is set. If
an error has occurred, a bit is set in —
register A:
® Bit 7 = Drive not ready
® Bit 6 = Disc is write protected
e Bit 5 = Write fault

® Bit 4 = Sector not found/seek
error

e Bit 3 = CRC error

® Bit 2 = Data lost —

modification

WRCHK
Modification

Disc Handling

Implementation : ROS 1.0 and 1.1

The transfer vector used for calling this
instruction is initialized to break to
Front Panel.

Write and check sector

Decimal code (hex) : 28 (1C)

Implementation : All versions of COS;
ROS 1.2 and 2.2

Registers affected : A and the flags

WRCHK writes out the specified sector,
exactly as for WRSEC, then reads it back
for verification. On exit, if no error has
occurred, register A holds 0 and the zero
flag is set. Error codes, returned as usual
in A, are:

® Bit 7 = Drive not ready

® Bit 6 = Disc is write protected

L] Bit 5 = Write fault

° Bit 4 = Sector not found/seek
error

e Bit 3 = CRC error
L) Bit 2 = Data lost

° Bit 1 = Data mismatch

Implementation : ROS 1.0 and 1.1
The transfer vector used for calling this

instruction is initialized to break to
Front Panel.

Initiate a cold bootstrap

Decimal code (hex) : 49 (31)
Implementation : All versions of COS;

ROS 1.2 and 2.2

BOOT puts the system into a defined state,
resets the stack pointer, and tries to load

Disc Handling

BOOT
modification

IDC EMT Definitions

track 0, sector 1 into memory at 80 hex.
In IDC systems, EMT RDSECL is used to read
the sector, and although only the first
sector is loaded, sectors 1,2, 3, and 4
must exist, otherwise a seek error will
occur.

When the firmware commands, B or X, are
entered, BOOT searches on drive A or B,
respectively.

In ROS versions, BOOT is called using a
transfer vector (see chapter 13 for its
of fset address).

Implementation : ROS 1.0 and 1.1

The transfer vector used for calling this
instruction is initialized to break to
Front Panel.

Errors returned from IDC EMT instructions are described on page 8.19.

INISYS

Initialize disc system

Decimal code (hex) 64 (40)

"

COS 4.2, ROS 1.2 and
2.2

Implementation

Registers affected : A and the flags

INISYS is used to select a disc drive for
booting the operating system. INISYS also
sets the maximum number of retries (of
reading or writing operations) to be
attempted if errors occur.

On entry to the instruction, register IX
must point to a byte in memory containing:

® Bits 4 to 7 specify the number of
retries to be attempted (0 to 14).
If this number is 15, there is no
change to the currently specified
number of retries.

Disc Handling

® Bit 3 = Drive change

0 signifies change
the drive mapping,
clear all buffers.
1 signifies no change
to the drive mapping.

° Bits 2 to 0 = Drive number (0 to 7)
of logical drive A
for booting

This instruction destroys the contents of
all buffers in the IDC, then initializes
them.

Note that the error-retry mechanism only

operates with logical operations and with
INIT.

Read physical sector

Decimal code (hex) : 65 (41)

Implementation : COS 4.2, ROS 1.2
and 2.2

Registers affected : A and the flags

RDSECP reads a physical sector (without
buffering).

The parameters of the sector to be read are
contained in a 5-byte block of memory, as
shown below. The address in register IX
points to the first of these bytes:

IX => DEFB UNIT (1 byte)
DEFB TRACK (1 byte)
DEFB SECTOR (1 byte)

DEFW ADDRESS (2 bytes)

The first byte, labelled UNIT, specifies
the following:

° Bit 7 = Reserved. Should be
L] Bit 6 = Track density
indicator.

0 is 48 tpi.
1 is 96 tpi.

A 96 tpi request will be forced to 48 tpi
on a 48 tpi drive unit.

0.

Disc Handling

L) Bit 5 = Data density. If 1,
double density. If
0, single density.

[] Bit 4 = Reserved. It should
be 0.

® Bit 3 = If 1, no disc access

is made and the data
held on the IDC is
used. If 0, disc
access is made.

[] Bits 2 to 0 = Drive number (0 to 7)
Data access.

The second byte, labelled TRACK signifies
the number of the track that holds the
sector to be read. This number ranges
from 0 to 76 (0 to 4C hex) on FDS systems
and 0 to 39 (0 to 27 hex) on MDS systems.

The third byte, labelled SECTOR, signifies
the sector number; it is in one of the
following ranges:

e 5.25-inch single-density = 1 to 16
(1 to 10 hex)

[) 5.25-inch double or quad density
=1to 9 (1 to 9 hex)

® 8-inch single & double-density
= 1 to 26 (1 to 1A hex)

The two bytes labelled ADDRESS specify the

memory address at which the data read from
the sector will be stored.

Write physical sector

Decimal code (hex)

Implementation

66 (42)

COS 4.2, ROS 1.2 and
2.2

Registers affected : A and the flags

WRSECP writes a physical sector (without
buffering).

The memory block parameters are the same as
described in the RDSECP definition except
for bit 3 in the UNIT parameter.

Disc Handling

Write and check physical sector

Decimal code (hex) : 67 (43)
Implementation : COS 4.2, ROS 1.2
and 2.2

Registers affected : A and the flags

WRCHKP writes a physical sector (without
buffering). The disc controller reads it
back and checks it.

The memory block parameters are the same as
described in the RDSECP definition.

Read logical sector

Decimal code (hex) : 68 (44)
Implementation : COS 4.2, ROS 1.2
and 2.2

Registers affected : A and the flags

RDSECL reads a logical sector (using
buffering).

The memory block parameters are the same as
described in the RDSECP definition except
for the range of the SECTOR byte.

The SECTOR byte is in one of the following
ranges:

[5.25-inch single~-density = 1 to 16
(1 to 10 hex)

. 5.25-inch double or quad density
= 1 to 36 (1 to 24 hex)

[] 8-inch single-~density = 1 to 26
(1 to 1A hex)

L] 8-inch double~density = 1 to 52
{1 to 34 hex)

Disc Handling

WRSECL Write logical sector
Decimal code (hex) : 69 (45)
Implementation : COS 4.2, ROS 1.2 & 2.2

Registers affected : A and the flags

WRSECL writes a logical sector (using
buffering).

The memory block parameters are the same as
described in the RDSECL definition.

WRCHKL Write and check logical sector
Decimal code (hex) : 70 (46)
Implementation : COS 4.2, ROS 1.2 & 2.2

Registers affected : A and the flags

WRCHKL writes a logical sector to the disc
(using buffering). The disc controller
reads it back and checks it.

The memory block parameters are the same as
described in the RDSECL definition.

FLUSH Flush Buffer

Decimal code (hex) : 71 (47)
Implementation : COS 4.2, ROS 1.2 & 2.2

Registers affected : A and the flags

FLUSH flushes all buffers that are
associated with the specified disc drive,
and that contain valid data not yet written
to the disc. This is done in the same
density as that in which of the data was
read. The IX register points to a UNIT
byte with the following format:

® Bits 7 to 4
3 Bit 3

Ignored

Specify either all
buffers (1), or only
the buffers on the
specified drive (0).
® Bits 2 to 0 = Specify the disc
drive

Disc Handling

Read disc drive information

Decimal code (hex) :

Implementation :

Registers affected :

72 (48)

COS 4.2, ROS 1.2 & 2.2

A

and the flags

RDINFO obtains information about any
connected disc drive.

On entry, the X register must point to a
valid UNIT byte (see the FLUSH description
for its format).

On successful exit, the Z flag is set and

the A register

Bits
to 4
Bit
Bit
Bit

Bit

Format disc

contains:

Reserved for future use.

Currently 0.

7 =

3 = 0
1

2 = o
1

1 = 0
1

0 = 0
1

track

Decimal code (hex) :

Implmentation :

Registers affected :

FORMAT can be used by

floppy discs.

if
if
if
if
if
if
if
if

48 tpi drive or
96 tpi drive.

48 tpi disc or

48 tpi disc.
single-density or
double-density.
5.25-inch or
8~inch.

73 (49)

COS 4.2, ROS 1.2 & 2.2

A

and the flags

utilities that format

A safety feature that

prevents disc damage has been incorporated.
One of the formatting parameters must point
to a valid check byte for formatting to

take place.

The parameters of the track to be formatted
are contained in a 5~byte block of memory,

as shown below.

The address in register IX

points to the first of these bytes:

IX =>

DEFB
DEFB
DEFB
DEFW

UNIT
TRACK

0
ADDRESS

{1 byte)
(1 byte)
(1 byte)
(2 bytes)

Disc Handling

The first byte, labelled UNIT, specifies
the required disc density:

® Bit 7 = Reserved.
Should be 0.

® Bit 6

Track density
indicator.

48 tpi.
1 = 96 tpi.

® Bit 5

Data density:
0 is single-density
1 is double-density

® Bit 3 = Set to 0

® Bits 2 to 0 = Disc drive number
(0-7)

The second byte, labelled TRACK, signifies
the track number to be formatted. This
ranges from O to 76 (0 to 4C hex) on FDS
systems and 0 to 39 (0 to 27 hex) on MDS
systems.

The two bytes labelled ADDRESS must point
to a valid check byte, whose contents
depend on the size of drive and the data
density:

® 5.25-inch, single~density = 16 (10 hex)
® 8-inch, single-density = 26 (1A hex)

® 5.25-inch, double or quad density
= 9 (9 hex)

® 8-inch, double-density = 26 (1A hex)

These controls are, in fact, the number of
physical sectors per track.

On successful exit the Z flag is set, and
the A register the values shown in the
RDINFO definition.

Disc Handling

VERTRK Verify format of a disc track

Decimal code (hex) : 74 (4A)

Implementation : COS 4.2, ROS 1.2 & 2.2
Registers affected : A and the flags

VERTRK is used in conjunction with the
FORMAT EMT to check that a valid recording
of the format of a disc track has been
made. The memory block parameters and
retrieval information are the same as
described in the FORMAT definition.

IDC EMT Error Codes and Exceptional Conditions

The IDC EMT instructions return error codes and other information in
register A. The states of the zero and carry flags indicate whether an
error has occurred or whether an instruction has been successfully
completed.

If the zero flag is not set, an error has occurred and the state of carry
flag determines what type of error has occurred. If the zero flag is set,
the instruction has been successfully completed.

The register A codes are summarized below:
° zero flag clear, carry flag set indicates that an error has occurred

while the firmware was sending the instruction or parameters to the
Ipc.

The error bits (set is significant) in register A are:

bit 7 = drive not ready

bit 6 = command unknown to the IDC

bit 5 = one or more parameters out of range
bits 4 to 0 = not used, defined as 0

Disc Handling

zero flag clear, carry flag clear indicates that a disc error has

occurred.

The error bits (set is significant) in register A are:

bit 7 = Drive not ready

bit 6 = Disc is write-protected

bit 5 = Unknown disc error

bit 4 = Sector not found/seek error

bit 3 = Cyclic redundancy check (CRC) error
bit 2 = Not used, defined as 0

bit 1 = Verification error during a

write/check EMT

bit 0 = The error refers to a previous sector when
flushing a buffer

zero flag set, carry flag set or clear indicates a successful

completion of the instruction.

The value returned in register A depends upon the operation:

a)

"b)

c)

disc access: 0 indicates success with no retries; 1 to 14
indicates sucess after 1 to 14 retries, and 15 indicates
success after 15 or more retries (only if several sectors are
accessed).

during reading of a physical sector: 0 indicates a 128-byte
sector, 1 indicates a 256-byte sector, and 3 indicates a 512~
byte sector.

during an operation which does not involve access to a disc:
register A will contain information about the disc drive as
described in the RDINFO definition.

Miscellaneous EMT Instructions

CHAPTER 9

MISCELLANEOUS EMT INSTRUCTIONS

This chapter gives details of several useful EMT instructions that are not
covered in the previous chapters.

The first section is a summary of the instructions and the version
differences; the second section gives definitions.

SUMMARY OF INSTRUCTIONS AND VERSION DIFFERENCES

Table 9.1 summarizes the miscellaneous EMT instructions.

Table 9.1 The miscellaneous EMT instructions
Mnemonic Code (Hex) Function
ERROR -1 (FF) Display error message, then return
to firmware command level

CONTC 0 (00) Return to command level

WAIT 16 (10) Wait B * 833 microseconds

UPDATE 18 (12) Copy MASK to PORTO

GETHEX 19 (13) Place a hex number from
keyboard in reg. HL

DEOUT 20 (14) Put reg. DE to (HL) as hex

BYTEO 21 (15) Put reg. A to (HL) as hex

CHAN 24 (18) Execute EMT given in reg. C

SAVE 35 (23) Save regs. HL, DE and BC on stack

SAVEA 36 (24) Save regs. Hl, DE, BC and AF
on stack

FSTLST 37 (25) Input 2 hex numbers prompted
by "First" and "Last"

GETJP 38 (26) Return Ath entry from table
at (HL)

BASE 39 (27) Return workspace address in
reg. DE

VERSN 51 (33) Return version number of
firmware

MOVBLK 61 (3D) Copy a block of memory to
another area

RAMMAP 62 (3E) Find amount of available
memory

Miscellaneous EMT Instructions

Table 9.2 gives implementation details and version differences.

ERROR

Table 9.2 Implementation details

Name Code COS COS COS COoS ROS ROS ROS ROS

3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
ERROR -1 * ® * * * * * *
CONTC 0 * ® * * * * * *
WAIT 16 * [] + + + + + +
UPDATE 18 * L * * X X X X
GETHEX 19 * ® + + + + + +
DEOUT 20 * ® * * * * * *
BYTEOQO 21 * ® * * * * * *
CHAN 24 * ® * * * * * *
SAVE 3 5 * [] * * * * * *
SAVEA 36 * ® b * hd * » *
FSTLST 37 * [] - - - - - -
GETJP 38 * ® * * * * * *
BASE 39 * . * * * * * *
VERSN 51 X ® * * * * * *
MOVBLK 61 X X X X ® X X X
RAMMAP 62 X X X X [] + + +

® Implemented - Major differences
* Fully compatible X Not implemented
Almost the same
DEFINITIONS

Print error message, return to firmware

command level

Decimal code (hex) :

Implementation

Registers affected :

-1 (OFF)

All versions of COS and ROS

Irrelevant

ERROR displays an error message on the screen
and returns control to the firmware command
level.

Miscellaneous EMT Instructions

Return to firmware command level

Decimal code (hex) : 0 (00)

Implementation : All versions of COS and ROS
Registers affected : Irrelevant

CONTC transfers control to the firmware command
level.

Wait B multiplied by 833 microseconds

Decimal code (hex) : 16 (10)

Implementation H All versions of COS
and ROS
Registers affected : None

WAIT waits an interval before returning to the
calling program. The interval time is specified
by the contents of register B multiplied by
1/1200 seconds. If B contains 0, there is an
interval of 256/1200 seconds in COS 3.0 and 3.4,
and ROS 1.2, and 2.2; in all other versions,
there is no interval.

In COS 3.0 and 3.4, this instruction uses the

hardware "1200 Hz" clock. All later COS and ROS
versions use a software simulation.

Copy MASK to PORTO

Decimal code (hex) : 18 (12)

Implementation : All versions of COS

Registers affected : None

A number of functions on the 380Z are controlled
by the bit pattern written into RAM location
PORTO (see chapter 12). This is a write-only
location, and any attempt to read it will return
the currently available character from the
keyboard.

A record of the current state of the bits in
PORTO is kept at location MASK in the workspace
area of memory (OFF03H). UPDATE reads the mask
word at this location and the contents are

modification

Migcellaneous EMT Instructions

written to PORTO.

Get a hex. number from the keyboard into HL

Decimal code (hex) : 19 (13)

Implementation : COS 3.0 and 3.4

Registers affected : A, B, C, HL, and the
flags

GETHEX is used to obtain a hexadecimal value
from the keyboard. Up to four hexadecimal
digits can be input, and the entered value must
be terminated by any non-hexadecimal character.
A leading 0 is automatically inserted; if no
hexadecimal digits are entered, 0 is returned.

Register HL contains the entered hexadecimal
value converted to binary, with the most
significant byte in H and the least significant
byte in L. Register C contains the number of
characters entered (0 to 4). Register B
contains the terminating character. Register A
is undefined.

If you enter <CTRL/B> during execution of this
instruction, input is stopped and you return to
the firmware command level. Entering <CTRL/C>
reloads CP/M.

Front Panel commands requiring hexadecimal input
use GETHEX; the screen format displayed when
you enter, for example, <J> in Front Panel mode
is the prompt that occurs with this instruction.

Implementation H COS 4.0 and 4.2

All versions of ROS
If you enter <CTRL/B> or <CTRL/C>, they act like

any other terminating character, with the
corresponding ASCII value left in register B.

Put register DE to (HL) as hex

Decimal code (hex) : 20 (14)

Implementation H All versions of COS
and ROS

Registers affected : Registers A and F

are destroyed. Register

Miscellaneous EMT Instructions

HL is incremented as
described below.

DEOUT is used to convert a 16-bit binary value,
in register pair DE, to a hexadecimal string at
the address contained in register pair HL.

On entry, HL can point to any valid memory
address. Four hexadecimal characters are output
to this address and the three following locations.

On return, HL points to the location following
that of the last character output. Leading zeros
are inserted if appropriate. The contents of DE

are unchanged.
DEOUT can be used whenever binary to hexadecimal
conversion is required.

Put register A to (HL) as hex digits

Decimal code (hex) : 21 (15)
Implementation : All version of COS
and ROS

Registers affected : Register A and the flag
register are destroyed.
Register HL is incremented
as described below

Like DEOUT, BYTEO converts a binary value to a
hexadecimal string but this time converting the
8~bit binary value in register A. Two
hexadecimal characters are stored at the address
given in register HL and at the location
following that address; on return, HL points to
the location following that of the last character
stored. A leading zero is inserted, if
appropriate.

Execute the EMT given in register C

Decimal code (hex) : 24 (18)

.

All versions of COS
and ROS

Implementation

Registers affected : Depends on the EMT
executed

Using this instruction, the EMT called can be

Miscellaneous EMT Instructions

made dependent upon a previous event in the
program. This is done by passing the hexadecimal
code of the required EMT to CHAN in register C.
Other registers should be set according to the
chosen EMT.

Save registers HL, DE, and BC

Decimal code (hex) : 35 (23)

Implementation : All versions of COS
and ROS

Registers affected : HL

SAVE registers HL, DE, and BC onto the stack
together with the address of a routine to pull
them off again.

The following example program causes the values
of these three registers to be preserved across
the call to the routine labelled SUBR:

Subr: push hl
push de
push bc
pop be
pop de
pop hl
ret

The program below does exactly the same:

Subr: emt save
N ;HL not available
. ;at this point.
ret

A drawback of the SAVE instruction is that,
although the value contained in HL is preserved
across the called routine, the old value is not
preserved across SAVE; this means that the old
value in HL is not available to the called
routine.

Miscellaneous EMT Instructions

Save registers AF, HL, DE, and BC

Decimal code (hex) : 36 (24)

Implementation s All versions of COS
and ROS

Registers affected : HL

SAVEA is similar to SAVE, except that register A

and the flags are also pushed on to the stack.
Again, the value in HL is not available to the
called routine, but is preserved across it.

Input first and last 16-bit numbers

Decimal code (hex) : 37 (25)
Implementation H COS 3.0 and 3.4
Registers affected : HL, DE, BC, A, and the flags

FSTLST obtains two 16-bit hexadecimal numbers
from the keyboard. FSTLST prompts:

First>

and calls GETHEX to obtain the first (lesser)
number. A number must now be entered and
terminated by pressing any key. FSTLST then
prompts:

Last>

and obtains a second (greater) hexadecimal
number, again using GETHEX. On exit, the first
number is held in register pair DE, and the last
is in BC. Register pair HL contains the
difference between these two quantities (the
sécond minus the first). Register A and the
flags are destroyed.

If the first number is greater than the second,
the firmware displays the message:

?EBrr?

or a similar message, and control returns to the
firmware command level.

FSTLST
modification

GETJP

Miscellaneous EMT Instructions

Implementation : COS 4.0, 4.2 and
all versions of ROS

FSTLST behaves in the same way as above except
that only <RETURN>, <space>, or <CTRL/F> will
terminate input.

If <RETURN> or <space> are used for termination,
the instruction operates as above but with the
CY flag cleared.

If <CTRL/F> is used, the sequence is aborted,
the contents of the registers are unpredictable,
and CY is set to indicate the situation.

Other non-hexadecimal characters are ignored,
except for <DELT> which deletes the most
recently entered character.

If the first number is greater than the last

number, an error message is displayed, and the
sequence is restarted.

Return the Ath entry from a table at (HL)

Decimal code (hex) : 38 (26)

Implementation : All versions of COS
and ROS

Registers affected : HL

GETJP is used to return an entry from a table of
two-byte quantities, often addresses. The value
in register A controls which entry will be
returned.

For example, the following program fragment
performs a "computed GOTO":

1d a,index iSelect entry.

14 hl,table ;Table of pointers.

emt getijp iGet entry.

ip (hl) ;Go to routine.
table: defw sub1 ;Continuation of

defw sub2 ;jmain program.

defw sub3

Miscellaneous EMT Instructions

On entry to GETJP register pair HL holds the
address of the start of the table (zeroth entry),
and register A holds the entry number. On exit,
HL holds the Ath entry in the table.

Return workspace address in register DE

Decimal code (hex) : 39 (27)

All versions of COS
and ROS

.

Implementation

Registers affected : DE

BASE returns the address of the base of a
defined area of firmware RAM workspace in
register DE. This instruction is provided to
cope with variations in workspace addresses in
firmware versions.

You can install alternative handlers (see
chapter 13) in place of an EMT, if it is called
using a transfer vector. To do this, you have
to adjust the contents of the transfer vector to
point to your own routine.

The absolute address of a transfer vector can
differ between each firmware version, but the
displacement of that address from the defined
workspace base is always the same.

Consequently, chapter 13 contains a table of
offset addresses with respect to this base. To
find where the defined workspace memory base is
in any version, use BASE.

Return version number of the firmware

Decimal code (hex) : 51 (33)

Implementation H All versions of COS,
(except 3.0) and all
versions of ROS.

Registers affected : AF, HL, DE, and BC.

VERSN returns the COS or ROS version number in
register A:

e In COS, the value returned is the version
number multiplied by 10 to convert it to an

Miscellaneous EMT Instructions

integer. For example, for COS 3.4 a return
value of 34 is generated in register A.

® In ROS, the version number multiplied by
10, plus 100, is returned. For example,
ROS 1.0 gives 110 in register A.

This instruction is useful when writing
transferable software. You can write a program
which finds out what system it is running on,
then adapts its operation accordingly. The
program finds the system by a call to EMT VERSN.

Unfortunately, the instruction did not exist in
COS 3.0, If you want to use VERSN and still
have a program that runs on COS 3.0 systems, you
must modify the TRAPX transfer vector to
simulate the action of the EMT on COS 3.0
systems (see chapter 13).

Copy a block of memory to another area

Decimal code (hex) 61 (3D)

»

Implementation ROS 1.0 only

.

Registers affected None

.

MOVBLK moves a copy of a block of memory from

one area of RAM to another. It allows access to
RAM outside the normal 64K addressing range. The
number of bytes to be moved is passed in register
IX (maximum 16Kbytes).

The block is addressed by a high order register
(using bits 0 and 1 only) and a normal register
pair (using all 16 bits). If the high order
register C contains zero, the register pair DE
will address the normal 64K of memory.

The data is copied into the area with start
address given by high order register B and
register pair HL.

If any of the addresses point to RAM which is
not present, there is an immediate return from
the instruction with no effect. Interrupts are
disabled during this instruction. Beware of
copying the workspace area of RAM, since this
could have catastrophic results.

Miscellaneous EMT Instructions

RAMMAP Find amount of available memory
Decimal code (hex) : 62 (3E)
Implementation : ROS 1.0
Registers affected : A

RAMMAP is used to find the amount of available
memory. On entry, register B must contain 0.
On exit, register A will contain the number of
16K blocks of RAM that are available.

RAMMAP Imglementation : ROS 1.1, 1.2, and 2.2
modification

As above, but register B can contain 1. In this
case, register HL contains a bit map of the
available blocks; bit 15 represents block zero,

bit 14 represents block 1, and so on up to bit 0
for block 15.

Debugging Facilities

CHAPTER 10

DEBUGGING FACILITY

This chapter gives details of a very useful facility provided by COS/ROS:
the Front Panel. This is a display showing:

® the contents of the Z80 registers and the memory that they address
® the contents of the 1/0 ports at the displayed address
® the addresses and contents of a 32-byte block of memory.

You can modify the registers and memory contents, and there are very useful
commands that allow you to test programs for bugs.

Of course, there are many debugging utilities on the market; DDT is an
example. However, they have to be loaded into RAM, taking up valuable
memory space. The Front Panel has the advantage that it is part of the
firmware, so it does not take up any RAM space.

Instructions on how to use the Front Panel for debugging programs are

given in the Research Machines manual: Machine Language Programming Guide.
This chapter is a reference document covering the modifications that have
been made with new firmware implementations. The first section describes

the Front Panel, and the second section gives details of Front Panel
commands.

THE FRONT PANEL

You can enter the Front Panel from COS/ROS command level by entering
<CTRL/F>. To enter during the execution of a program, you can do one of
the following three things:

[] Use 0OFF hex, the breakpoint code.

L) Enter <CTRL/F> when the program is waiting for input from the
keyboard.

* Call an entry address
L) In ROS versions, type <CTRL/SHIFT/9>.
In each case (except the first one), you can return control to the program

by using the K command. Control returns to the line following the line

executed last (assuming that the contents of the program counter have not
been changed).

10.1

Debugging Facilities

The Front Panel Display

When you enter the Front Panel, the display on the screen will look similar

to Figure 10.1.

(—>PC E6AC C9 CD AD EO 18 F3 F5 3a
SP FFBE 9E E6 AC E6 3F E4 FF 00 Mc.mory
IY 01D5 80 C3 OF 04 00 FF EE 00 Page 1< | —— —
e number
Reaisters IX 7BFA 32 6F CO FF 01 OE OF 80 P9
9 HL EEDO 18 00 FO BA CO F5 00 01
DE FF04 04 00 F5 BE C1 F5 AC E6
BC 0000 AC E6 00 00 C3 2F E4 00 Conltents
AF 06FF SZ H VNC T Ve — — — — - — A- r!_qistcr
zsoflags T)O 0000 FF FF FF FF FF FF FF FF n .Pn“
-
.]+~ Eem0o c9 meAs cO EeBO 0c E6B8 OC
1/0 pointer E6A1 F7 EGA9 CD E6B1 FF E6B9 FF
E6A2 21 EGAA AD E6B2 B7 E6BA F1
E6A3 FE E6AB EO E6B3 28 E6BB FE Memory addresses
E6A4 06 —E6AC 18¢— E6B4 05 E6BC 01 and. contents
E6A5 28 E6AD F3 E6B5 3E E6BD CO
E6A6 02 E6AE F5 E6B6 17 E6BE 33
EG6A7 B7 E6AF 3A E6B7 32 E6BF 0C
L |
Figure 10.1 The Front Panel Display

In firmware versions earlier than ROS 1.1, there are some differences from

this display:

° ROS 1.0 and all COS versions do not display the memory map page

number .

° COS 3.0, 3.4 and 4.0 do not display the accumulator contents in

character form.

The Front Panel prompt for a command is the ! sign followed by the cursor.
Only the bottom four lines of the screen are scrolled; the top 20 lines are
used for displaying three zones:

1. The register display zone (the upper 8 displayed lines)

2. The I/0 port zone (the middle line)

3. The memory display zone (the lower 8 displayed lines)

The upper zone of the Front Panel display shows the current contents of the

Z80 registers and of the memory locations that they address.

The display

relating to each register occupies a single row and registers are

Debugging Facilities

identified using their standard Zilog abbreviations. From the top of the
screen downwards these are as follows:

) The program counter (PC)

e The stack pointer (SP)

[The index registers (IX and IY)

® The 16-bit general-purpose register pairs (HL, DE and BC)
[] The accumulator and flag register (AF)

When the alternative set of registers is displayed, their names are tagged
with apostrophes: HL', DE', BC', AF',

On the lefthand edge of the register area, an arrow indicates the register
or register pair currently selected for modification. This arrow points
initially to the program counter.

Immediately to the right of each register name, its contents are displayed
as a four-digit hexadecimal number; to the right of this is shown the

contents of each of the eight bytes in the memory region addressed by the
register.

The byte currently addressed by the register pair is in the column with an
upwards pointing arrow at its foot. To the left, in a given row, are the
contents of locations with lower addresses than the current register

content, and to the right are the contents of locations with higher
addresses.

For the PC, SP, IY, IX, HL, DE, and BC registers, the four bytes preceding
the current location, and the three bytes following it, are displayed.

In the case of the accumulator, the contents of the flag register, F, are
displayed when set. The standard Zilog flag abbreviations are used: S, Z,
H, V, N, and C. On the righthand side of this line, the present contents
of the accumulator are displayed in character form.

The row between the register and memory displays shows the contents of
I/0 ports:

I0 0000 FF FF FF FF 80 80 80 80
port number contents of port number 0000

The 4-digit number indicates the port number, and the vertical arrow points

at the contents of that I/0 port. In the above example, the contents of
port0 are 80 hex.

The three 2-digit numbers on the right of the arrowed contents contain the
contents of ports 0001, 0002, and 0003 (extreme right). The four 2-digit
numbers on the left contain the contents of ports FFFF, FFFE, FFFD, and
FFFC (extreme left).

Debugging Facilities

The lower zone of the Front Panel display shows the address and contents of

a 32-byte area of memory that is centred on the current memory address.
This is the address pointed at by the two arrows on the fifth row of the
initially it is 0100. 1In figure 10.1, the arrows point at

second column;
OE6AC.

FRONT PANEL COMMANDS

Front Panel commands are entered through the keyboard.
them are single letter commands.

Command

CTRL/B
CTRL/C
<LINE FEED>
CTRL/L
<RETURN>
CTRL/O
<ESC>

SN KX EAAHNDBIOYWOZREHRUHIO®Y A« N I~

Function

Return to COS « « &« ¢ ¢ » « o ¢ o o o o«
Return to CP/M or COS « « ¢« o ¢ o o o+ «
Move Memory Pointer forward eight bytes
Move Memory Pointer forward 32 bytes. .
Move Memory Pointer forward one byte. .
Move Memory Pointer back 32 bytes . . .

.

The majority of

Figure 10.2 summarizes them.

Toggle Display between Front Panel & Stored Screen.
Move register pointer/set register address.

Enter Text (to Memory or to G command).
Write to I/O POXt « « s o s o s o s o &
Move Memory Pointer back one byte . . .
Move Memory Pointer back eight bytes. .
Set Port Number « « o« o « « « o o o o o
Increment Port Pointer. . « « « ¢ ¢ o« =«
Decrement Port Pointer. « « « ¢ o ¢ o &
Calculate and Insert Relative Offset. .
Search for Patterne « « « « o o s « o o
Hexadecimal Calculator. « « « o s o o« &«
Move Memory Pointer absolute indirect .
Jump to Program « « « « s o o o o o o o
Continue Program. « « « o o o o s o o &
Insert Breakpoint « « o« o ¢ o o o o o o
Move memory pointer « « « « o« o s o o o
Find next occurence of Pattern.
Options « o« o o o o o s o ¢ o s s o o &
Fill MEMOYY o « « s o o o o o o s o o &
Remove Breakpoint « « ¢ o o o o o o o «
Move Memory Pointer relative indirect .
Move Block of MEmOXye « « o o o o o » o
Display Memory as Text or Hex « . « +
Update Memory Pointer from PC . .+ « .
Update PC from Memory Pointer . . « . .
Toggle Screen Width « « « « « o« o « o &
Exchange Registers. « ¢« « o « « o « o &

Step through Subroutine / Repeated Instruction. . .

Single Step « ¢ o o o o« s o o s 2 s o o
Change Memory Page Number « « « + « « o«

Figure 10.2 Front Panel Commands

10.4

Page

10.21
10.21
10.6

10.6

10.6

10.7

10.22
10.7

10.24
10.12
10.6

10.7

10.13
10.13
10.13
10.18
10.19
10.19
10.9

10.15
10.15
10.24
10.9

10.20
10.22
10.9

10.25
10.10
10.10
10.25
10.11
10.11
10.23
10.11
10.16
10.16
10.23

Debugging Facilities

Definitions of the commands are handled in seven groups: pointer commands,
memory and register modification, input/output port commands, jump and step
commands, search and calculate commands, the outside world, and latest

commands .

Pointer Commands

Table 10.1 gives the family of commands that is used to set the memory
pointer and to move the register pointer.

Table 10.1 Front Panel pointer commands
Command Function
<RETURN> Move memory address forward one byte
<LINE FEED> Move memory address forward 8 bytes
<CTRL/L> Move memory address forward 32 bytes
<=> (minus) Move memory address back one byte
</> (slash) Move memory address back 8 bytes
<CTRL/0O> Move memory address back 32 bytes
<+> (period) Move register pointer/set the register address

Table 10.2 describes firmware implementation and differences.

Table 10.2 Implementation and differences
COs COs COs COs ROS ROS ROS ROS
Command 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
<RETURN> * [] * * * * * *
<LINE FEED> * L] * * * * * *
<CTRL/L> * ® * * * * * *
<= - ® * * * * * *
< /) * [* * * * * *
<CTRL/O> * ® * * * * * *
o> * Y * * * * * *
L] Implemented
* Identical

10.5

Debugging Facilities

Two arrows, known as the memory pointer, point at the fifth line of the
second column of memory addresses on the screen display. The address
pointed at by the memory pointer is the current address and this can be
changed; however, the memory pointer cannot be moved. Instead, the six
memory address setting commands move the whole display of memory addresses
with respect to the memory pointer's position.

The one register pointer command, (.), does move the register pointer to
any of the eight register pairs or the I1/0 port.

These commands can also be used to change the contents of a register pair,
an I1/0 port address, or a memory address. By entering a hexadecimal number
(up to 4 bytes) before you type the command, the contents at the pointer
will be changed, then the move will occur.

For example, to change the contents at the present memory address to OFF
hex, and to move the memory address forward 8 bytes, enter:

FF <LINE FEED>

Definitions of the commands are listed below:

RETURN Move memory address forward 1 byte
Implementation : All versions of COS and ROS

This command advances the memory address by one
location with respect to the current address.

LINE FEED Move memory address forward 8 bytes
Implementation : All versions of COS and ROS

This command advances the memory address by 8
locations with respect to the current address.

CTRL/L Move memory address forward 32 bytes
Implementation : All versions of COS and ROS

This command advances the memory address by 32
locations with respect to the current address.

- {(minus) Move memory address back by one byte
Implementation : All versions of COS and ROS

This command moves the memory address backwards
one location with respect to the current
address.

/ (slash)
CTRL/O
. (period)

Debugging Facilities

Move memory address back 8 bytes

Implementation : All versions of COS and ROS
This command moves the memory address backwards

by 8 locations with respect to the current
address.

Move memory address back 32 bytes

Implementation : All versions of COS and ROS
This command moves the memory address backwards

by 32 locations with respect to the current
address.

Move register pointer/set the register pair

Implementation : All versions of COS and ROS

This command moves the register pointer down one
position to point at the next register or at the
I/0 port. If the pointer is pointing at the I/0
port when you enter <.>, it jumps upwards to
point at the PC register.

To set the register pair, enter a 4-digit
hexadecimal number followed by <.>. For example,
to change the contents of register pair BC from
0012 to 3412, move the pointer to the BC
register and enter:

3412 <.>

If you entered only 34 <.>, the resultant
contents of register BC would be 0034.

10.7

Debugging Facilities

Memory and Register Modification

Table 10.3 gives the family of commands that is used for memory and
register modification.

Table 10.3 Memory and register modification

Command Function

<I> Set memory address from memory contents (abs. indirect word)
<M> Set memory pointer

<P> Fill memory

<R> Set memory address from memory contents (rel. indirect byte)
<S> Move block of memory

<U> Update current memory address from program counter

<V> Update program counter from current memory address

<X> Exchange register sets

Table 10.4 describes firmware implementation and differences.

Table 10.4 Implementation and differences

COs COS COosS Cos ROS ROS ROS ROS
COMMAND 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
<I> * 9 * * * * * *
<M> * [] + + + + + +
<P> * ® + + + + + +
<R> * [} * * * * * *
<8> * ® + + + + + +
<U> * ® * * * * * *
<V> * [] * * * * * *
LX> * [} * * * * * *
® Implemented + Almost the same
* Identical
This group of commands is made up of three types:
° those that set the memory address (I, M, R, U)
° those that influence the memory contents (P, S)

e those that modify the registers (V, X).

Debugging Facilities

Definitions of the commands are listed below:

I

M
modification

Set memory address from memory contents
(absolute word, indirect)

Implementation : All versions of COS and ROS
This command sets the memory address to the 16~
bit address which is held in the current
location of the memory pointer.

The command expects the least significant byte
first, as in Z80 addressing.

Set memory pointer

Implementation : COs 3.0 and 3.4

This command sets the memory pointer to any
location. The entry prompt is displayed when
you press <M>; enter a hexadecimal number (up to
4 digits) followed by <RETURN>. This now
becomes the memory address pointed to by the
memory pointer.

Implementation : COS 4.0 and 4.2.
All versions of ROS

The entered hexadecimal number can only be
terminated by <RETURN>, <SPACE>, or <CTRL/F>
(which aborts the command). All non-hexadecimal
characters, other than <DELT>, are ignored.

Fill memory
Implementation : COS 3.0 and 3.4

This command fills a section of memory with one
particular byte of your choice. There are
prompts for the first and last addresses of the
area to be filled, and for the byte to fill it.
If the last address is lower than the first, an
error message is displayed and control is
returned to the COS command level.

While memory is being filled, the system reads
it back to make sure that the new contents have
been stored correctly, thus providing a simple
check of the memory. If a location does not
read back correctly, an error message is
displayed and the Front Panel display is updated

10.9

Debugging Facilities

P
modification

so that the memory pointer indicates the
location at which the error has been detected.

Implementation : COS 4.0 and 4.2.
All versions of ROS

Entered hexadecimal numbers can only be
terminated by <RETURN>, <SPACE>, or <CTRL/F>
(which aborts the command). All non-hexadecimal
characters entries, other than <DELT>, are
ignored.

The sequence is restarted if the last address is

greater than the first.

Set memory address from memory contents
(relative byte, indirect)

Implementation : All versions of COS and ROS

This command sets the address pointed to by the
memory pointer to the relative address,
calculated from the present memory contents.

The value of these contents is taken as the
number of locations that the present memory
address must be moved. An extra one must be
added to this expected relative jump, to account
for the automatic advance of the program
counter. The command sets the pointer to the
address that the Z80A would reach on
encountering this relative jump.

Move block of memory

Implementation : COS 3.0 and 3.4

This command shifts the contents of a portion of
memory into another portion of memory.

Enter <S>, and prompts are displayed requesting
the first and last address of the block of memory
to be moved, and then for the first address of
the area into which the block is to be moved.

All three addresses must be entered as
hexadecimal values up to 4 digits in length.

A block of any size can be moved in any
direction, but if the first address of the
block to be moved is higher than the second, an
error message is displayed and control is

10.10

s
modification

Debugging Facilities

returned to COS command level.

Implementation : COS 4.0 and 4.2.
All versions of ROS

In the case of erroneous entry, an error
message is displayed but control is not
transferred to COS/ROS command level and the
sequence is restarted.

The hexadecimal numbers may be terminated by
<RETURN>», <SPACE>, and <CTRL/F> (which aborts
the command). All non-hexadecimal characters,
other than <DELT>, are ignored.

Update memory address from program counter

Implementation : All versions of COS and ROS

This command sets the memory pointer to the
present contents of the program counter.

Update program counter from current memory address

Implementation : All versions of COS and ROS

This command sets the program counter contents
to the current memory pointer.

Exchange register sets

Implementation : All versions of COS and ROS

This command displays the alternative set of
registers (HL', DE' BC' and AF'). All
operations on registers now affect this
alternative set until <X> is pressed again.

10.11

Debugging Facilities

Input/Output Port Commands

These commands are used to enter values into the current output port, and
to change the current I/0 port address. Table 10.5 gives a summary of these
commands and Table 10.6 describes firmware implementation and differences.

Table 10.5 Input/output port commands

Command Function
<,> (comma) Write to I/0 port -
<:> (colon) Set 1/0 port number
<<> {less than) Increment port address
<>> (greater than) Decrement port address
Table 10.6 Implementation and differences
COsS COs Cos cos ROS ROS ROS ROS —
COMMAND 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2,2
<,> (comma) * ® * + * + + +
<:> (colon) X X X [] * * * * —
<<> (less than) * [] A * * * * *
<>> (greater than) * [] * * * * * *
[] Implemented + Almost the same -
* Identical X Not implemented
Command definitions are listed below: e
+ (comma) Write to I/0 port
Implementation : COs 3.0

This command inserts a new value into the
current output port specified by the vertical
pointer. The destination of this value is
controlled by the port address (see appendix C
for I/0 port allocations).

10.12

modification

: (colon)

< (less than)

> (greater than)

Debugging Facilities

If no hexadecimal value is entered before you
enter <,>, zero is sent to the output port.
Implementation : COS 3.4 and 4.0, ROS 1.0

1f a comma is entered without any hexadecimal
characters, the command is ignored.

Implementation : Cos 4.2
ROS 1.1, 1.2 and 2.2

The ports displayed are not read back as part of
the Front Panel response to the command.

Set I/0 port number

Implementation : COS 4.2 and all versions of ROS

This command changes the current I/0 port address
without the necessity of positioning the register
pointer on the I/O line of display.

To change the address, enter your required new
address (up to 4 hexadecimal digits) followed by
<:>. The I/O port address will immediately be
changed to this new address.

Increment port address

Implementation : All versions of COS and ROS
This command increases the I/0 port address by

one location. The displayed row of port
contents are shifted one place to the left.

Decrement port address

Implementation : All versions of COS and ROS
This command decreases the I/O port address by

one location. The displayed row of port
contents are shifted one place to the right.

10.13

Debugging Facilities

Jumps and Steps

These commands are useful for testing programs that you have written. It
is possible to execute one instruction (2 command), or one sub-routine (Y
command), at a time. After execution, the register and memory displays are
updated to reflect any changes that have occurred. Table 10.7 summarizes
the jump and step commands; table 10.8 lists implementation and version
difference details.

Table 10.7 Jump and step commands

COMMAND FUNCTION
<J> Jump to address and start program execution
<K> Continue program execution from PC address
<Y> Step through calls, EMTs, and repeated instructions

such as LDIR

<2> Single step through individual program instructions

Table 10.8 Implementation and differences

COsS COS COS cCos ROS ROS ROS ROS
COMMAND 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
<T> * ® + + + + + +
<K> * ® + + + + + +
<¥> X X X X X ® * *
<2z> * ° + + + - - -
[] Implemented + Almost the same

* Identical

Major differences
Not implemented

»

10.14

modifications

modifications

Debugging Facilities

Jump to address and start program execution

Implementation : COS 3.0 and 3.4

This command can be used to start programs
without setting the program counter to the start
address.

When you enter <J>, the entry prompt is
displayed. Enter the required address and press
any key. If you enter the wrong address, it can
be cancelled by entering <CTRL/F>.

Implementation : COS 4.0 and 4.2, ROS 1.0

After entering your address, the only
terminating characters allowed are <RETURN>,
<SPACE> or <CTRL/F> (to cancel). All other non-
hexadecimal characters (except <DELT>) are
ignored.

The screen is cleared with reversion to its
entry screen width.

Implementation : ROS 1.1, 1.2 and 2.2

If saved, the screen is restored. Otherwise the

screen is cleared.

Continue program execution from PC address

Implementation : COS 3.0 and 3.4
This command restores all registers and

continues execution at the address currently in
the program counter. The screen is not cleared.

Implementation : COS 4.0 and 4.2, ROS 1.0.

When the <K> command is entered, the screen is
cleared with reversion to the entry screen width.

Implementation : ROS 1.1, 1.2 and 2.2

If saved, the screen reverts to the saved image.
Otherwise the screen is cleared.

10.15

Debugging Facilities

modification

Step through calls and EMTs

Implementation : ROS 1.1, 1.2, and 2.2

This command allows you to execute a subroutine
as though it is a single instruction.

If execution could involve screen display, the
Front Panel display reverts to the saved image
while the sub-routine is being executed, then
displayed again at the end of execution.

Single step through individual program instructions

Implementation : COS 3.0 and 3.4

This command allows you to execute a program one
instruction at a time.

Each time <Z> is pressed, one instruction is
executed; the register and memory displays are
updated if changes have occurred.

If execution involves screen display, this is
superimposed on the Front Panel display.

Implementation : COS 4.0 and 4.2

This command executes an entire EMT instruction
rather than single-stepping through it.

Implementation : ROS 1.0

This command executes an entire CALR instruction
(see chapter 14) as well.

Implementation : ROS 1.1, 1.2, and 2.2

If execution could involve screen display the Front
Panel display reverts to the saved image while

the instruction is executed, then displayed

again at the end of execution.

10.16

Debugging Facilities

Search and Calculate Commands

The G and N commands enable you to search the memory for a specified
pattern of bytes. The @ and H commands are calculators that assist in
working out relative addresses.

Table 10.9 summarizes these commands; Table 10.10 describes firmware
implementation and differences.

Table 10.9 Search and calculate commands

COMMAND FUNCTION
<@> Calculate and insert relative offset
<G> Search for specified pattern of bytes
<H> Hexadecimal calculator
<N> Find next occurrence of a pattern
Table 10.10 Implementation and differences
CcCOS COs COs COs ROS ROS ROS ROS
COMMAND 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
<@> X X X X X ® * *
<G> * @ + + + + + +
<H> * ® + + + + + +
<N> * ® * * * * * *
® Implemented + Almost the same
* Identical X Not implemented

10.17

Debugging Facilities

Command definitions are given below:

Calculate and insert relative offset

Implementation : ROS 1.1, 1.2 and 2.2
—_sreararion

This command calculates and inserts the relative
offset value to be used in a relative jump
instruction to jump to the required address.

The value is inserted at the present memory
address.

For example, if the present memory address is
0100 and you want to perform a relative jump to
0115, you can enter the following simple
program.

First use the M command to set the memory to
point at address 0100:

<M>0100

Now enter the jump relative machine-code
instruction, 18 hex at this address:

18<RETURN>

and the contents of address 0100 will contain
18.

To calculate the relative jump value to jump to
0115, enter:

<@>15<RETURN>

and the contents of address 0101 will now
contain 13, the calculated value.

To observe the program in operation, do the
following:

® Use the M command again to set the memory
pointer at 0100.

® Use the V command to set the program
counter contents to 0100.

@ Use the Z command to execute the program.
The program counter now points at address 0115.
The entered hexadecimal numbers can be

terminated by <RETURN>, <SPACE>, and <CTRL/F>
(which aborts the command). All other non-

10.18

G
modifications

H
modification

Debugging Facilities

hexadecimal characters except <DELT> are
ignored.

search for specified pattern of bytes

Implementation : CcOos 3.0 and 3.4

This command searches memory for the entered
pattern of bytes (two hexadecimal digits at a
time). The pattern can be any reasonable length
from one byte upwards. For more than two bytes,
the pattern is entered in batches of 2 digits
separated by <RETURN>. As soon as <RETURN> is
pressed without digit entry, the search begins.

The search stops when the pattern is found, and
the memory display is then updated. The memory
pointer location contains the first byte of the
sought pattern.

Implementation : COS 4.0 and 4.2.
All versions of ROS

The entered numbers can only be terminated with
<RETURN>, <SPACE>, or <CTRL/F> (which aborts the
command) «

All other non-hexadecimal characters except
<DELT> are ignored.

In ROS 1.1, 1.2, and 2.2 the use of "(double

quote) text string <RETURN> is allowed within a
search string.

Hexadecimal calculator

Implementation : COS 3.0 and 3.4
This command prompts for two hexadecimal numbers

(up to 4 digits), each terminated by <RETURN>.
Their sum and difference are displayed.

Implementation : COS 4.0 and 4.2

All versions of ROS
The entered numbers are only terminated by
<RETURN>, <SPACE>, or <CTRL/F> (which aborts the

command) .

All other non-hexadecimal characters except

10.19

Debugging Facilities

The Outside World

<DELT> are ignored.

Find next occurrence of a pattern

Implementation : All versions of COS and ROS
——p-rFmentation

This command is used in conjunction with the G
command. Once a search for a pattern has been
set up with the G command, the search for
further occurrences of the found pattern can be
made by entering <N>.

You can start the search at any location by
setting the memory pointer to that location
before entering <N>.

This family of commands control exit from Front Panel to COS/ROS command
level or to CP/M (CTRL/B and CTRL/C). Temporary exit is provided by the
ESC command that allows you to see the screen display from which you

entered Front Panel.

The O and W commands control certain system features.

Table 10.11 summarizes the commands, and Table 10.12 describes firmware
implementation and differences.

Table 10.11 The outside world commands

COMMANDS FUNCTION
<CTRL/B> Return to COS/ROS command level
<CTRL/C> Return to COS/ROS command level or CP/M
<ESC> Display original screen contents, and return
<0> Set options
<W> Switch screen width

10.20

Debugging Facilities

Table 10.12 Implementation and differences

COoS COS COs COs ROS ROS ROS ROS
COMMAND 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
<CTRL/B> * [] + + + + + +
<CTRL/C> * ® + + + + + +
<ESC> X X X X X [] * *
<O> *] + + * * * *
<W> X X ° * * * * *
® Implemented + Almost the same

* Identical

*

Not implemented

Definitions of these commands are listed below:

CTRL/B Return to COS/ROS command level

Implementation : Ccos 3.0 and 3.4

This command returns control to COS command
level, but the screen is not cleared of the
Front Panel display.

CTRL/B Implementation : COS 4.0 and 4.2
modification All versions of ROS
The screen is now cleared, the screen width is

restored, and the screen contents are restored
(if saved).

CTRL/C Return to COS/ROS command level or CP/M

Implementation : COS 3.0 and 3.4
This command returns control to the most

recently used command level, but the screen is
not cleared of the Front Panel display.

10.21

Debugging Facilities

CTRL/C
modification

ESC

[o]
modifications

Implementation : COS 4.0 and 4.2
All versions of ROS

Control returns to the most recently used
command level. The Front Panel display is
cleared from the screen, the screen width is
restored, and the screen contents are restored
(if saved).

Display original screen contents; press again to
return to Front Panel.

Implementation : ROS 1.1, 1.2 and 2.2
—rothentation

This command displays the screen display from
which you entered the Front Panel.

For example, if you entered Front Panel from the
ROS command level, the following firmware sign-
on message will be displayed:

RML 80 Character LINK 480Z V1.2 B
Z-NET Firmware Vers 1.1q Address: XX

To start BASIC in ROM type the command R
Please give a command or type H for help

The computer will not respond to further input,
except <ESC> again, which causes the Front Panel
to be re-displayed.

Set options

Implementation : COs 3.0 cos 3.4/C.

All versions of ROS

This command allows you to select cassette
speeds or printer options.

Implementation : COS 3.4/M+F, COS 4.0 and

COs 4.2

The command no longer checks for cassette spead.
It asks only for printer type.

10.22

Latest Commands

Debugging Facilities

Switch screen width (80-character systems)

Implementation : COS 4.0 and 4.2.

All versions of ROS.

This command changes the character width to be
used on exit from Front Panel. It works only in
80-character systems.

When <W> has been entered, the character width
to be used next is displayed.

This family of commands are recent additions to the list that have not been

covered in previous sections.

Table 10.13 summarizes these commands, and

Table 10.14 describes firmware implementation and differences.

Table 10.13

Latest Front Panel commands

FUNCTION

<"> (double quote)
<\> (back slash)

Enter text string
Change memory page number

<L> Insert breakpoint
<Q> Remove breakpoint
<T> Display memory contents as text or
hexadecimal contents
Table 10.14 Implementation and differences
cCOs COSs COos CoOs ROS ROS ROS ROS

COMMAND 3.0 3.4 4.0 4.2 1.0 1.1 1.2 2.2
<"> X X X X [] * * *
<AN\> X X X X X [* *
<L> X X X ® X * * *
<Q> X X X ® X * * *
<T> X X X [] * * * *

[] Implemented X Not implemented

* Identical

10.23

Debugging Facilities

Definitions of these commands are listed below:

" (double quote)

\ (back slash)

Enter text string

Implementation : All versions of ROS
o errarion

This command allows you to enter a string of
characters terminated by <RETURN>. The text is
put into memory sequentially, and the memory
pointer points to the location immediately
following the last byte inserted.

Entering <CTRL/F> aborts the command, and <DELT>
functions normally. Characters with ASCII
codes of less than 20 hex are ignored.

This command can also be used in conjunction
with the G and N commands to search for a string
of characters. Enter <G>, then <"> followed by
the character string.

Change memory page number

Implementation : ROS 1.1, 1.2 and 2.2
——r-rrentation

This command changes the currently displayed
memory map page to the next is sequence (0, 1, 2,
and 4). See chapter 12 for details of memory
maps.

Insert breakpoint

Implementation : COS 4.2 and ROS 1.1, 1.2,

and 2.2

This command inserts OFF hex (a breakpoint) into
the memory contents at the current memory
address. This allows you to run a program to a
specific point: the breakpoint.

After inserting the breakpoint, you can run your
program (using the K or J commands).

When the breakpoint is encountered, the Front
Panel is displayed with the state that was
present before the breakpoint execution, and
the message, BREAK, is displayed.

The program counter and memory pointer now

contain the address of the breakpoint. If a new
breakpoint is inserted when an old breakpoint is

10.24

Debugging Facilities

still present, the old breakpoint is replaced
with the original value of the memory contents.

Remove breakpoint

Implementation : COS 4.2 and ROS 1.1, 1.2,
and 2.2

This command removes the last breakpoint that
was inserted using the L command, restoring the
memory content to what it was before the command
was initiated.

Display memory as text or hexadecimal contents

Implementation : COS 4.2 and all versions of ROS
This command changes the displayed memory
contents from their hexadecimal representation
to the equivalent characters:
e special graphics (00 to 1F hex, and 7F hex)
® ASCII (20 to 7E hex)

® teletext graphics (80 to OFF hex).

If you press <T> again, the hexadecimal contents
are displayed.

10.25

Direct Access to Screen Memory

CHAPTER 11

DIRECT ACCESS TO SCREEN MEMORY

This chapter gives details of how to access the screen memory.

As was pointed out in chapter 3, the screen is refreshed at regular
intervals from an area of RAM in both 3802 and 480Z machines; but the
method of access in each machine is different. Matters are further
complicated in COS 4.0 and COS 4.2 380Z machines because there are
different accessing method for 40 and 80-character display modes.

Unless it is absolutely necessary, you are strongly advised not to access the
screen memory by the methods outlined below. Whenever possible use the
EMTs outlined in chapters 2 and 3.

The first section of this chapter describes direct access in 380Z machines;
the second section concerns 480Z machines.

3802 MACHINES

COS 3.0 and 3.4

The screen display is a direct display of a 960-character block of static
memory, arranged as 24 lines of 40 characters each; this block is at
locations F000 to F5FF (see chapter 12). It is accessible to both video
circuitry and the CPU, but not simultaneously.

Control of access to the screen memory is provided by the state of bit 2 of
the memory-mapped port, PORT0 (see chapter 12):

) 0 grants access to the video)

L] 1 grants access to the VDU

Consequently, you could access the screen memory with your program at any
time by setting the control bit in PORTO. But, if this occurs when
information is being sent to the screen, the picture is disturbed. There
will be a bright flash, or a momentary dark horizontal band.

To prevent these disturbances, you can synchronize your program with the
video circuitry. The CPU can take control only during periods when
information is not being sent to the screen; those periods are during frame

and line blanking. Two bits in PORT1 (see chapter 12) indicate when they
occur:

11.1

Direct Access to Screen Memory

° Bit 6 is set during the frame blanking period. This is
approximately 4.5 milliseconds every 20 milliseconds.

L) Bit 7 is set during the line blanking period. There is time to
output only one character.

The EMT instructions OPNWT and CLOSE (see chapter 4) simplify matters
further. OPNWT waits until the next frame blanking period occurs, then it
opens the screen memory for program access. CLOSE closes the screen memory
to the CPU.

Provided that instructions take less than 4.5 milliseconds to execute, your
code to manipulate screen memory can be placed between calls to OPNWT and
CLOSE without disturbing the current picture display.

Characters can be sent to any part of the screen using a 16-bit number in
register pair HL. This number gives the row address (R) and column
address (C) in the form:

ROW COLUMN
e e e e e

L1 [1]1[1]o[r[R[R[R[R]c]c]c]c]c]C]

REGISTER H REGISTER L

The top lefthand corner of the screen (row 0, column 0) is given by:

ROW 0O COLUMN O

[A[3]1]i[e]olo[o]olo]oe]o]o]e]o]

The top righthand corner (row 0, column 39) is given by:

ROW O COLUMN 38
S S

R [T[e[o]olo[e[o[1[e[o[1]1[T]

A central screen position (for example row 12, column 20) is given by:

ROW 12 COLUMN 20
It ™ et I

[Ai]e[o[1[1]o[o]e]1 0] 1]e]o]

11.2

[

Direct Access to Screen Memory

In short:
. choose your row number and column number
° convert the respective numbers into binary code
3 enter the binary number in the correct area of the 16-bit number

which makes up the address in register pair HL.

The following program example shows how to display the letter A near the
top lefthand corner of the screen, third row down, tenth character along:

14 hl,3%*64+10+0£000h ;iLoad HL with value 0f000H
i (top lefthand corner) + offset
emt opnwt ;Wait for screen blanking.
14 (hl),'A’ ;Load character A to
iscreen.
emt close iClose screen.

COS 4.0 and 4.2

These firmware versions support both the 40-character and 80-character

modes of screen display. Direct access to the screen memory is different
for the two modes:

] 40-character mode
As described in the previous section.
[80-character mode

The screen memory is mapped differently, and not all the screen can
be addressed at the same time.

The character position addressing procedure is different. CHoose
your row and column numbers, and convert them to binary code.

For the column address, the binary number is placed in the righthand
bits of the 16-bit number (as in 40-character mode) . As the number
of addressable columns is now 80, one more bit is needed for numbers
greater than 63.

For the row address, only bit 0 of the binary row number is put in
the HL register pair. The remaining bits 1 to 4 are put in bits 0
to 3 of PORT 1. Consequently, the HL register pair will contain:

ROW
(BITO) COLUMN
P I e

[1[1]1]1]o]ofo]o[r[c[c[c|c|c]c]|c]

REGISTER H REGISTER L

Direct Access to Screen Memory

Here is how to display the letter in the same place as above:

1lda hl, 128&(3*64)+10+0£000h

14 a, (mask1)

and OFOh

or a, 3 shr 1 ;Shift row right 1 bit.
;Register A now has
ithe required value for
;PORT1.

14 (port1),a

emt opnwt iAs above.

14 (h1l),'A"'

emt close

4802 MACHINES

The 480Z does not have any memory-mapped ports. Input/output-mapped ports
(see appendix C) are accessed by z80 I/0 instructions.

In both 40 and 80-character modes the 480Z screen memory is mapped as a

block of 24 input/output ports that the CPU can access at any time. the
port at I/O address 0 corresponds to the top line of the screen, and the
port at 17 hex (23 decimal) corresponds to the bottom line.

Any of the 280 I/O instructions using register C (such as IN, OUT, INIR,
OTIR), that are described -in any Z80 programming manual, can be used to
read from or write to the contents of the screen memory in all versions of
ROS. The row number should be placed in register C and the column number
in register B before entering the instruction.

For example, to display the letter 2 at the bottom righthand corner of the
screen (line 23, column 80), the following instructions could be used:

14 b,80
1d c,23
14 a,'z'
out (c),a

A whole line (80 characters) of text can be read from the screen to RAM by
a single INIR instruction, or written out with an OTIR instructiom.

Note that there is no need to open or close the screen to RAM before or
after access, as you do in COS. But, the line blanking and frame blanking
signals are accessible as bits in a port; these signals can be used for
timing purposes.

11.4

Memory Layout

CHAPTER 12

MEMORY LAYOUT

When operating in a high-level language, the computer allocates memory
space to programs and variables in a manner determined by the language
system designer. Though you can overide this automatic memory allocation,
it is rare that you need to do so.

In assembly language, however, you often have to make decisions about
memory allocation. Consequently, you must know the layout of both RAM
(random access memory) and ROM (read only memory). You need to know where
the operating systems (both firmware and CP/M) are stored, and which areas
of memory you can use.

This chapter has sections on usable memory, reserved memory, and memory
pages.

USABLE MEMORY

The Z80 microprocessor can address 64Kbytes of memory. Each location is
referred to (in hexadecimal notation) by its position in the memory. The
first location, at the bottom of the memory, is 0000H, the next is 0001H,
the next is 0002H, and so on up to OFFFFH.

The normal layout of memory, with the CP/M operating system loaded, is
shown in figure 12.1.

The total size of memory available depends on your computer system:

[Very early 380Z machines had a variety of memory sizes up to
32Kbytes.

* The latest 380Z machines have 64Kbytes.
° Some early 4802 machines have 32K; later models have 64K.

With CP/M loaded, the available RAM (in the transient program area) lies
between 0100H and the address in location 0006H (HIMEM); this points to the
top of usable RAM plus 1. On 64Kbyte machines this gives approximately 50K
of usable memory. Machines with smaller memory size have less usable RAM
(smaller transient program area).

The amount of usable RAM can be increased by not loading CP/M, or by
overwriting the loaded CP/M utilities in memory; this increases usable
memory by about 8K, but you have only the firmware facilities. Disc-
handling operations are curtailed by this action.

12.1

Memory Layout

It is strongly recommended that, whenever possible, you write your programs
using CP/M facilities; this assures maximum transferability of your
software. For most programs, there is sufficient usable memory, even with
CP/M loaded.

FFFFH
COS/ROS Workspace (RAM)
COS/ROS (ROM)
EQPPPH in 380Z
E89PH in 4802 8105
BDOS CP/m opemli
L — systunmg
Mem CcCP
Address
$ Transient Program
Area (RAM)
PIPPH
System Tables
PPPOH

Figure 12.1 Memory layout with CP/M loaded

Memory Layout

RESERVED MEMORY

With a few exceptions, the areas of memory referred to in this section are
not accessible to you. The layout details given here are for information

only and the contents of these locations should not be tampered with under
any circumstances.

Figure 12.2 shows the layout of firmware facilities at the top of memory
(above EO0OH in figure 12.1). The component parts are discussed below.

FFFEH FFFEH
coSs
Workspace (RAM) ROS
FCOPH Workspace (RAM)
FBOPH 1/0 Ports P
cos F8POH
Firmware (ROM)
FepodH - RoS
FOOOH Video RAM+HRG
Firmware (ROM)
(oo XY
Firmware (ROM)
E8QPH
Sgstun RAM
EQPPH EQPPH

Figure 12.2 Layout of firmware memory usage above E0OOH

COS Firmware (ROM)

Areas OEO0OH to OFFFFH and O0F6000 to OFAFFH in figure 12.2(a) should not be
used as they change with every version.

COS Video RAM +HRG

Area OF000H to OFSFFH in figure 12.2(a) is used for screen display by direct
access to memory (see chapter 11).

Memory Layout

I/0 Ports in a 3802

Area 0OFBOOH to OFBFFH in figure 12.2(a) is the 3802 I/0 memory port area.
Details of the ports are shown below:

CPU/VDU ports
FBFF FBFF | User 1/0 (R/w)
\\ FBFE| Port | (R) Bit allocations in
- FBFO H % Reserved F8ro | Counter (R) PORTO and PORT1 are
FBFc | Port O/kBD (RMW) given in table 12.1
- FBEO ¢
S10-| ports
- FBoo 4 | Reserved FBF3] Aux & RDY (W)
FBF2 | Reset (W)
— FBCO 4 T FBE| | cTRL/status (R/W)
Feeo| Data (RM)
be FBBO e
fe FBAO
~ FB90 4 FB4O-FBBF
128 mem ports
— FB8C - Reserved o
user application
be FBTO «d °f
—~ FB60 —
—~ FB50 — Rom board ports
F833 | Low address (w)
- FB40 £B32 | High address (W)
} FB3)| Dala. (W)
- FB30 4 Es30] Conbrol (W)
- FB20 4 | Reserved
- FBIO HRG ports
FBOI] Port! (W)
- FBoo T LFBoo] Porto (R/w)
Table 12.1 Bit allocation in PORTO and PORT1(CPU/VDU ports)
Bit PORTO (write) PORT1 (read)
4] clear keyboard latch -
1 enable single step (O=set) 1200 Hz clock
2 open screen memory reset button
3 relay 1 (O=closed) cassette volume sense
4 set 2400 Hz -
5 relay 2 (0O=closed) cassette signal sense
6 clear 8 microsecond counter screen frame waveform
7 memory page switch screen line waveform

12.4

Memory Layout

The 3802 uses I/O-mapped ports as well; details of these are given in
appendix C.

ROS Firmware (ROM).

Area OEB00H to OF800H in figure 12.2(b) should not be used as it changes
with every version.

ROS System RAM

Area OEOOOH to OE800H in figure 12.2(b) is the ROS system RAM area. This
is out of bounds and, for information only, its contents are shown below:

E8PPH

Z Net
Workspace

BASIC in Rom
workspace

Reserved

1oc Disc

Support (Ros 1-2
and later)

EQPPH

COS And ROS Workspace (RAM)

FFFFH

Transfer Vectors,
system stack and
system variables

BASE Location |~ — — = — — =

FCOPH in COS
F8OPH in ROS

Memory Layout

This area of RAM, known as firmware workspace, can only be accessed for the
addition of device handlers (as outlined in the next chapter) or to use
MASK. Otherwise, do not use this area; there is a big danger that you will
damage the system.

System Tables

Area 0000H to 0100H in figure 12.1 is the system tables area. It is split
into two parts:

e 0000H to 007FH, an area of RAM that is used by both firmware and
CP/M (see the CP/M Programmers Manual for a description of how CP/M
uses this area).

® 0080H to OOFFH, an area of RAM that can be used with caution.
The firmware use of RAM area is shown in figure 12.3, and the CP/M use of

this same area is shown in figure 12.4. Figure 12.5 illustrates the areas
that overlap and sometimes cause confusion.

FF D DMA
area (RAM)
8¢
79
7777777777777 66-69 - NMT Vector. Used by Front
60 Panel (single -step)

5¢

49
7777Z7] 38-3F RST33 Break to Front Panel
36 7 39-37 RST 39 EMT Mechanism
28-2F RST 28 CALR Mechanism

¢ |[IZZZZ] 29-21 RST2$ Iniatialization
o [ZZZZZZY 1911 RSTI® Used at power-up

m ®6-¢7 — Point to one above the top of useable
o PP-92 RSTO Jump to fom memory

ware
com.ma.nd. ‘DOP

Figure 12.3 Firmware use of system tables area

12.6

Memory Layout

quwdt DMA
buffer area (RAM)
had 10-7F Random record position
N (default)
7 \\ » 5¢-7¢ File control blok(FC8) arma,
\\ (default)
69
i 44-4F Reserved
&P AP—-43 Disc map
38-3F DDTand ZSID
3¢
¢
19
¢5-97 Stand. BDOS function
L4 do-92 Jump to warm boot P:.t'"ty

Figure 12.4 CP/M use of system tables area

SR Tw L

\\\\\\\\\

Figure 12.5 Overlapping use of system tables area

12.7

Memory Layout

MEMORY PAGES

With the 480z, it is possible to have more than one memory layout. There
are four layouts with different addressing schemes, or pages. These pages
consist of blocks of ROM and RAM; the mapping of ROM into address space is
controlled by a mapping PROM, and the mapping of RAM is controlled by the
firmware.

The layout shown in figure 12.1, known as page 1, is most commonly used.
The other pages are:

® page 0 Initialization, some ROS functions
° page 2 BASIC in ROM
3 page 3 ROS (not accessible)

Interrupt Routines

Since paging exists, all interrupt routines should be in an area of memory
that is present in all pages. Such an area is the top 16K of memory. The
address of the interrupt vector table is FCO0H. For further information,
see the Mostek 280 Programming Manual. For use of vectors in the table, see
the 480Z Information File.

12.8

Transfer Vectors and Device Handlers

CHAPTER 13

TRANSFER VECTORS AND DEVICE HANDLERS

This chapter gives details of how the EMT mechanism works. The differences
in operation between directly-called EMTs and EMTs called using transfer
vectors are highlighted. The addition of your own routines, or device
handlers, is discussed.

The first section of the chapter explains how the EMT mechanism operates.
The second section concerns transfer vectors, device handlers, the TRAPX
vector, and filters.

HOW THE EMT MECHANISM WORKS

The actions involved in an EMT call (and the areas of memory that are used)

are outlined in figure 13.1, using graphical representations of the page 1
memory layout.

FFFFH e wo] FFFFH
space

13 FH r
FEFFH— EFF

oS [ROS Work:
Space

<o | RoS (ROW) cos/ros (Rom)]

EMT === ———

System Tables System Tables
GPIPH |- === =~ DBIOH
PBPPH = PPPOH © POOPH B) OIBPH @

Figure 13.1 How the EMT mechanism works

13.1

Transfer Vectors and Device Handlers

Your program requests execution of an EMT instruction using the RST 30H
instruction. This produces jump A (figure 13.1(a)) to location 30H in the
system tables area of memory.

The contents of location 30H produce a jump to the EMT dispatcher in the
COS/ROS (ROM) area, jump B in figure 13.1(b).

The code number of the required EMT (in the byte following the RST 30H
command) is evaluated, and a jump to the start of the EMT routine occurs
(jump C in figure 13.1(c)). When the routine has been executed, control
returns to your program at the instruction following RST 30H (jump D in
figure 13.1(d)).

The simple program example on page 1.6 shows how the mechanism is used in
practice.

TRANSFER VECTORS

In most cases, the mechanism described above provides ample scope for
programming requirements. However, some EMT instructions are called using
a 3-byte transfer vector. 1In this case, jumps A and B occur as before,
then the mechanism changes as shown in figure 13.2.

FH

FFEFH COSIROS Work- FEFFH €oS/ROS Work- FFF <COS/ROS Work-
space space space

Teansfer oo o m e Teamsfes = = = = — — =

Vector Vector
C = |0 p——
oS/ ROS (Rom) EMT Routine |LEMT Roubine
COS/ROS (ROM) COS /ROS (ROM)
E

(2) 2 (b (cy *

Figure 13.2 The EMT mechanism using a tansfer vector

The EMT dispatcher checks that the EMT is called by a transfer vector,
and a jump to the relevant transfer vector takes place (jump C in figure
13.2(a)). The transfer vector contains a jump instruction in the first
byte, and the address of the start of the EMT routine (in bytes 2 and 3).

Consequently, jump D (in figure 13.2(b)) occurs and, when execution of the

routine is completed, command returns to your program (jump E in figure
13.2(c)).

13.2

Transfer Vectors and Device Handlers

Device Handlers

You can intercept the EMT mechanism and add your own routines by replacing
the address in the transfer vector with the start address of your own
routine (or device handler). 1In this way, jump D would go to your routine
situated in another part of memory, rather than to the EMT routine.

To be able to do this, you need to know the location of the transfer
vector. The absolute address of a transfer vector is different in each
firmware version, but the displacement of the address from the base of a
defined area of workspace is always the same. You can find this
displacement for all transfer vectors in table 13.1; this gives offset
addresses from base.

In ROS, your device handlers must reside in the top 16K of memory.

13.3

Transfer Vectors and Device Handlers

Table

13.1 Transfer vector offset address

-

Transfer Offset
EMT Vector Address Comments
(hex)
|
GETSYN GETGAP OF COS 3.0 and 3.4, and all ROS versions iL
LPSTAT LPSTATV OF COS 4.0 and 4.2
KBDTL KBDTLV 12
KBDWF FBDWFV 15
ouTC VTV 18 J~
KBDC KBDV 1B
PUTBYT TOV 1E} In COS 4.0 and 4.2, breaks to Front Panel
GETBYT TIV 21
LPOUT LPV 24
ouT1 ouT1 27 Jv
ouT2 ouT2 2A
IN1 IN1 2D
IN2 IN2 30
IN3 IN3 33
- TRAPX 36
- KBDPRE 3E ROS 1.1, 1.2 and 2.2
LPSTAT LSTATV 44 COS 3.0 and 3.4; all ROS versions
BOOT BOOTV 6B ROS only (breaks to Front Panel in ROS 1.0 & 1.1)
INIT INITV 6E J_
RDSEC RDSECV 71
WRSEC WRSECV 74 In ROS 1.0 and 1.1, breaks to Front Panel
WRCHKV WRCHKV 77
INISYS INISYSV -2A
RDSECP RDSECPV =27 Jm
WRSECP WRSECPV -24
WRCHKP WRCHKPV -21
RDSECL RDSECLV -1E
WRSECL WRSECLV -1B
WRCHKL WRCHKLV -18 COS 4.2 and ROS 1.2 J,
FLUSH FLUSHV -15
RDINFO RDINFOV -12
FORMAT FORMATV -0E
VERTRK VERTRKV -0C
SETLST SETLSTV -09
S4KIN S4KINV -06
S4KTL S4KTLV -03

L

The base address also varies with each firmware version,
its address using the BASE EMT.

Transfer Vector address =

13.4

Base of defined area of workspace (from
EMT BASE) + Offset address (from table 13.1)

but you can
The transfer vector address is given by:

y Transfer Vectors and Device Handlers

Some vectored EMT routines (present in early firmware versions) are not used
in later versions, but the EMT can still be called; the transfer vector
contains OFFH, causing a break to Front Panel. GETBYT is an example of this

type of EMT. The vector is initialized to break to Front Panel in COS 4.0
and 4.2.

This type of EMT can be used for device handling (in COS 4.0 or 4.2) by
changing the address (OFFH) in the transfer vector to the address of your
handling routine, as shown in figure 13.3.

When you call GETBYT, the EMT dispatcher jumps to the GETBYT transfer
vector (jump C in figure 13.3(a)).

Workspace coszwks;:n Cos Workspace
Modified | | Modified

GETBYT GETBYT

Vector c) Vector
COS (ROM) cos (Rom) €OS (ROM)

[0) S——

—— o ——

@ (v)
Figure 13.3 Adding a device-handling routine

This vector now contains the address of the start of your handling routine,
so jump D (figure 13.3(b)) jumps to it. When the routine has been
executed, control returns to your program (jump E in figure 13.3(c)).

The TRAPX Vector

Another way of adding device handlers is to use the TRAPX vector (see table
13.1). Control passes to it if your EMT code number is greater than the

highest code number in your Firmware version. It is initialized to break
to Front Panel.

If you store a jump instruction at TRAPX:

C3 nnH
(where nnH is the start address of your handler routine)

a jump to your routine will occur.

At this point, register A contains the code number and register HL contains

13.5

Transfer Vectors and Device Handlers

the address at which it is stored.

The previous values of AF and HL are on

the stack, therefore these must be popped before a RET instruction can

occur, otherwise the contents will be lost.

Here is an example program

where the vector at TRAPX is assumed to have been initialized earlier to
jump to My.emt.handler:

My.emt.handler:
cp

jr
ip

Enter:

ret

some .number

z,enter
old.trapx vector

af
hl

;Check that the EMT call is for
ithe EMT which currently intere
;jus and jump to Enter if it is,
;else jump to old TRAPX vector
i (this is assumed to have been
isaved somewhere).

sts

iEntry point to device servicing

jcode.

iRecover working registers.

;Then do whatever is needed to
iservice the device.

iReturn to calling routine.

Note that any program that intercepts the TRAPX vector must restore
value before exit, or strange results may occur later.

13.6

the old

Transfer Vectors and Device Handlers

Another example of the use of the TRAPX vector is in simulating the action
of EMT VERSN so that your program will run in COS 3.0 (where EMT VERSN is

not present):

emt base

14 hl, trapx.offset

add hl,de

push hl

14 de, trapx.save

14 bec,3

ldir

pop de

push de

14 hl,my.trapx.jump

14 bec,3

ldir

emt versn

pop de

push af

14 hl,trapx.save

14 be,3

ldir

jp rest.of .program
my.trapx.joump:

jp my.trapx
trapx.save:

defs 3
my.trapx:

pop af

pop hl

14 a,30

ret

The KBDPRE Location

iThis calculates the address of the
;TRAPX vector (by adding its offset
;from the base of COS/ROS workspace
;to the current value of that base.
;The address is left in HL

;This saves the old contents of the
;TRAPX vector (note that all 3 bytes
;must be saved).

The TRAPX vector is now in DE.

;A new vector is inserted into TRAPX
;to point to our new routine.

iThis calls EMT VERSN. If we are
;in a version of COS earlier than
;3.4 this will result in a call to
;TRAPX and, thence, to our own
jroutine.

iThis recovers the old contents of
;TRAPX. Although not strictly
inecessary in this code fragment, it
i1is always good practice; failure
ito do so could result in some
;strange behaviour later on.

;A place to keep the old contents
;of TRAPX.

;Pretend to be COS 3.0.

In 480Z machines (ROS 1.1, 1.2 and 2.2), when a keyboard key is pressed,

the character generated goes to the keyboard buffer.

placed in a workspace location called KBDPRE (see table 13.1).

Using KBDPRE, languages such as BASIC, LOGO, and PASCAL detect escape

characters when they are pressed, rather than waiting for them to go through

13.7

The character is also

Transfer Vectors and Device Handlers

the keyboard buffer. After KBDPRE has been read, the character is cleared
and replaced with 03FH (the ? character).

If your software uses an EMT to read the keyboard, you should be aware that
the keyboard buffer will be cleared but KBDPRE will not. The solution is

to include instructions in your machine-language program to clear KBDPRE.

The following example will do this:

14 hl,3eh

emt base iFind base address.

add hl,de ;Find KBDPRE address

14 (hl),*'?* ;Load ? into KBDPRE.
Filters

In some instances you may wish to use an EMT only if a certain condition
exists. This can be done with EMTs called using a transfer vector.

You can change the contents of the vector to point to your routine as
discussed above. However in this case, your routine checks if the
condition exists:

L] If it does, control is transferred to the EMT routine then back to
your program after execution of the EMT.

® If it does not, control returns to your program without execution of
the EMT.

IMPORTANT: If you do use this filtering facility, ensure that your routine
is placed above OBFFFH (in common RAM). 1In the 480Z, EMTs
called using a transfer vector switch between memory pages (see
chapter 12). Consequently, their vector points to common RAM,
an area of memory that is RAM in all pages.

Under CP/M, make sure that your filtering routine is placed above OBFFFH by
doing the following:

Build a 55K CP/M using MOVCPM

Copy the 55K image onto your system disc with SYSGEN (S option)
Press reset, then load the 55K CP/M

Use DDT to load the .Hex file into memory

Locate your program at 0COOH upwards.

Under CP/NOS the MOVCPM utility is not available, sSo you cannot use the
above procedure.

13.8

Transfer Vectors and Device Handlers

The following program uses an OUTC vector filter to change dollar characters
sent to the screen to pound characters, by outputting an escape sequence,

ESC, '!', 26 in place of the dollar sign:

org 0c000h

outc equ 1 ;OUTC emt

base equ 39 ;BASE emt

warm boot equ 0 ;Warm boot address

esc equ 27 iEscape char

dollar equ '$’

pound equ 26

pling equ e
:install_px_putc;;outine:

1d sp,install_gy;putc_;outine -2

emt base ;Get pointer to
; vector base in DE.

14 hl,.vtv + 1

add hl,de

push hl ;(hl) points to OUTC
;jvector address.

14 a, (hl) ;Install vector in
;my outc routine.

inc hl - -

14 h,(hl)

14 1l,a

14 (old outc_vector + 1),hl

pop hl ;Restore pointer to
joutc vector.

14 de,my_putc_;outine

la (hl),e ;Install
jmy_outc routine
ipointer in outc
;vector.

inc hl

14 (hl),d

ip warm_boot
;New OUTC routine
;my_putc_;outine:

cp dollar

14 a,esc ;Escape sequence
;jfor 'pound sign'

call old outc vector

14 a, pling

call old outc vector

14 a,pound ;Graphic char.

;for ‘pound sign'.

old outc_vector:
jp 0) ;NB: overlayed by
;install routine.

NOTE: As this program stands, it will convert all dollar characters to

pound characters, including those in control character sequences and
escape sequences.

13.9

Position-Independent code

CHAPTER 14

POSITION-INDEPENDENT CODE

This chapter describes position-independent code (PIC); this is a form of

machine language that is written to produce sections of code that can run
at any address.

The first section of this chapter is an introduction to PIC. In the second
section there is a description of a firmware instruction, CALR; this is a
relative call instruction that is very useful when writing PIC.

INTRODUCTION

It is often convenient to be able to write sections of code that can run at
any address at which they are loaded. This type of code is called
position-independent code, or PIC.

PIC is useful for sub-routines that are frequently used, since thay can be
attached to programs without having to be located at a specific address.
PIC is also useful if you want to add a sub-routine to a different system;
you can place the sub-routine in any vacant part of the memory. In both
cases, PIC can be used directly.

Of course, you could achieve a similar effect by using an assembler to

produce a relocatable object module, but this requires relocation before it
can be used.

Differences Between PIC and Relocatable Code

A relative jump instruction performs the same function as an absolute jump
instruction; both transfer control from one part of a program to another.
The difference is the way that the jump destination is calculated:

° an absolute jump collects a given two-byte address from the
register containing the address, and loads the address into the
program counter.

[a relative jump goes back or forward a specified number of spaces.
The specified number is known as the offset number.

The relative-jump type of instruction is necessary for PIC, where data is
either relative to the program counter or addressed in the stack.

Relocatable code can be placed anywhere in memory but all addresses are

relative to the start of the program. Consequently, relocatable code is
address—dependent.

14.1

Position~Independent code

To run relocatable code with another program, you have to use a linker to
adjust the addresses in the new program.

THE CALR INSTRUCTION

The Z80 possesses some relative jump instructions, but not all of the types
needed for writing PIC. There are some useful "register-indirect" load
instructions. For example:

14 a,(hl)
1a (iy + 3),b

These can be used in PIC to access memory if you can set up the registers
for addressing.

However, the 280 does not have a relative call instruction. Consequently,
the firmware interprets the CALR instruction (E7 hex) to do this. CALR
works in a similar way to the EMT instructions, taking the byte following
it as the offset distance to jump.

The CALR instruction can be used wherever the CALL instruction would be
used, provided that the target sub-routine is within range. As CALR is an
interpreted instruction, it takes longer to execute than a CALL
instruction.

In addition, CALR can be used in a PIC program to set up an absolute
address in an index register. This is shown in lines 13 to 17 inclusive of
the example program below, where "BUF" is the label of the desired target
address, and $ is the symbol for the assembler's location counter. Complex
Programs can be written in PIC, taking little more space than a normal
program.

The following program, written entirely in PIC, dumps memory to the line

printer, one byte per line; each byte is represented by two hexadecimal
digits:

14.2

Position-Independent code

calr $+ 2 ;Put PC on top of stack.
14 de,buf - §
pop ix
add ix,de ;IX now points to BUF.
emt fstlst ;Get the boundaries of memory dump.
inc hl
Next: emt kbdc ;Check for <CTRL/C>.
14 a,0dh
calr chout ;New line.
1ld a,0ah i<LF>.
calr chout
14 a, (de) ;Get byte
calr outp ;& output it.
inc de ; Increment pointer.
dec hl ;Decrement byte count.
14 a,h ;Has byte count
or 1 ireached zero?
jr nz,next ;No, jump to carry on.
emt 0 ;Yes, so end program.
Outp: push hl isave byte.
push ix ;Count.
pop hl ;HL now points at BUF.
emt byteo ;Convert A to hex in location BUF.
dec hl
dec hl ;Move HL back to start of BUF.
14 a,(hl) ;Get first ASCII digit.
calr chout iPrint it.
inc hl ;Move HL to second.
14 a,(hl) ;Get second ASCII digit.
calr chout ;And print it.
pop hl ;iRecover byte count.
ret

i Subroutine CHOUT.

;The output channels through this subroutine
;(to simplify patching) to send output
;whither required.

H

Chout: emt lpout ;Char to line printer.
ret
Buf: defs 2 ;Workspace for BYTEO

kbdc equ 2
byteo equ 15h

outc equ 1

lpout equ

fstlst equ 37
end 100h

14.3

Position-Independent code

Long-Range Calls

Like
+129,

lcalr:
push
push
push

14
add
14
inc
1d

inc
inc
14
dec
14

dec
14
dec
14
add

ret

To wuse this code,

code.
calr

1$: pop
14
add
1d
14
14

rst
defw

the 780 relative jump instructions,
If you need a bigger range, the code below can be used:

hl
de
af

hl,6
hl,sp
e, (hl)
hl

d, (hl)

de
de
(hl),d

(hl),e

de,hl
hl
d, (hl)
hl
e, (hl)
hl,de

af
de
(sp),hl

1$

de

hl, lcalr - 1%
hl, de

(019h),hl

a, 0c3h

(18h),a

18h

subroutine - $+2

7SP initially points
ito
;japparent return address.

;HL now contains address of
inormal return address (NRA).
;Put NRA

jinto

;DE.

7Add 2 to NRA to obtain
ireal return address (RRA).
;Put RRA from DE

irback onto stack

iin place of NRA.

iPut RRA into HL and (SP+6) into DE.
iPoint to last location

ibefore RRA

icontaining offset (16 bit).

iPut offset into DE.

;Add it to return address

i Exchange old HL

iwith required subr.address
iwithout moving SP.

iTakes you to required subr.

modify the jump vector at 18H to jump to this piece
A code fragment could be:

iGet address of 1$ into DE.
iGet offset of LCALR into HL.
iHL now has absolute address of LCALR.

;iPlace address in vector for restart 18H.

iPut in JP instruction.

;Equivalent to
;CALL SUBROUTINE.

14.4

CALR has a call range of -126 to

of

Quick Reference Guide

APPENDIX A

QUICK REFERENCE GUIDE OF EMT INSTRUCTIONS

This appendix lists the EMT instructions and summarizes their effects.
Those instructions marked with an asterisk are called using a transfer
vector (see chapter 13).
The following shorthand conventions are used:

= The register contains the value before call.

<= The value is put into the location by the call.

<= This points to (before call).

OUTC Instructions That Send Characters To The Screen

* OUTC 1(01H) Output byte in register A to the screen.
Screen <~ A
OUTCNV 22(16H) As OUTC, not using transfer vector.
Screen <~ A -~
MSG 23(17H) Output message at (HL) to the screen.

HL => First character of message
Terminated by OFFH.

OUTNC 42(2aH) Output byte in A to screen without losing autopage
character (COS versions only).

Screen <- A
Keyboard latch is not cleared.

CURPOS 59(3BH) Returns the address of the cursor position (x,y).
(not COS 3.0 and 3.4).

H <~ Line

L <~ Column

Quick Reference Guide

.

Maintenance Instructions That Modify Screen Effects

GRAFIX 13(0DH) Clear the top 20 lines giving a 4 line scroll
SCROLL 14 (0EH) Full screen scroll
WIDTH 52(34H) Change screen width or return present state

(not COS 3.0 and 3.4)

COS 4.0 and 4.2
Sl S S0G Bee

A = Width
0 = 40
1 =80

A = -1 for present state request
0 <- 0 signals 40
1 <~ 1 signals 80

All ROS versions
S—o e versions
As above, but also returns current scrolling window

= =2 for scrolling window request
<= Top line

<= Bottom line

<- Leftmost column

<= Rightmost column

HOOWw>

WINDOW 58(3AH) Define window area of the cursor
(not COS 3.0 and 3.4)

B <~ Top line

C <~ Bottom line

D <~ Leftmost column
E <- Rightmost column

Instructions That Access Screen Memory

VTOUT 55(37H) Output character to screen
(not COS 3.0 and 3.4)

A = Character

H = Line

L = Column

E = Attribute bit (not ROS)

ouick Reference Guide

VTIN 56(38H) Read character from screen
(not COS 3.0 and 3.4)

= Line

= Column

<~ Character

<- Attribute bits (not ROS)

[B

VTCLR 57(39H) Clear specified area of the screen
(not CCS 3.0 and 3.4)

B = Top line
C = Bottom line
D = Leftmost column
E = Rightmost column

VTLINE 60(3AH) Output line or part of line

C = Number of characters in string
DE => String
H = Line
L = Column

Synchronizing Instructions For Screen Memory Addressing

OPNWT 11(0BH) Open screen for memory access
(COS versions only)

CLOSE 12(0CH) Clear screen
(COS versions only)

CLEAR 15(0FH) Clear selected screen band
(COS versions only)

HL => Start of top line
A = Number of lines to clear
HL <- (Last character +1)

OUTF 43(2BH) Output to screen at (HL) from A register
(COS versions only)
(HL)<- A

INF 44(2CH) Input from screen at (HL) to register A

(COS versions only)

A <= (HL)

Quick Reference Guide

Character-Pattern Generating Instructions

CHGEN

53(35H)

CHREAD 54(36H)

Generate a new character pattern
(COS 4.0 and 4.2 only)

A = Character

DE => Bit pattern

B = 0 for normal use (wait for frame blanking)
B = 1 for immediate use

Read current character pattern
(COS 4.0 and 4.2 only)

A = Character

DE => Bit pattern

B = 0 for normal use (wait for frame blanking)
B = 1 for immediate use

Recommended Keyboard-Handling Instructions

KBDTL

KBDW

* KBDWF

31(1FH)

33(21H)

34(22H)

Test keyboard for depression

A <- TRUE (OFFH) if a character
A <~ FALSE (00H) if a character
Z set if no character

Wait for a character, read it, clear the keyboard

A <- Keyboard entry
Trap <CTRL/A>
Blinking active

As KBDW plus test for entry to Front Panel

A <~ Keyboard entry
Trap <CTRL/A>

Trap <CTRL/F>
Blinking active

Other Keyboard-Handling Instructions

* KBDC

2(02H)

Read the keyboard, trap CTRL/C

A <- Keyboard entry

A <- 0 if no character
Z set if no character
Trap <CTRL/C>

Quick Reference Guide

KBDIN 29(1DH) Read and clear the keyboard

A <~ Keyboard entry (not <CTRL/A> in ROS)
A <= 0 if no character
Z set if no character

KBDTC 30(1EH) Test keyboard and return character
A <~ Keyboard entry
A <- 0 if no character

Z set if no character
Trap <CTRL/A>

Printer And Interface Handling

* LPOUT 5(0SH) Output byte in register A to interface

Interface <- A

* OUT1 6(06H) Undefined output EMT linked to I/O channel

* 0UT2 7(07H) As OUT1

* IN1 8(08H) Undefined input EMT linked to I/0 Channel

* IN2 9(09H) As IN1

* IN3 10(0AH) As IN2

* SETLST 41(29) Set printer (or device) from registers A and E
A = Interface
E = Baud rate

Interface Code

Screen

S$I10-1 (not ROS)
S10~-2/2B/3

User I/0 port
S10-4

SIO-5 (not ROS)
= SIO-6 (not ROS)

nowouwon

]

AUk W =0

Baud Rate Code

i

110
300
600
1200
2400
4800
= 9600

OV B WN = O
[]

Quick Reference Guide

* S4KTL 47(2FH) Test SIO-4 interface for a character
A <= 1 if character
A <- 0 if no character
Z2 set if no character
* S4KIN 48(30H) Read the SIO-4 interface into register A

A <~ Character (minus most significant parity bit)

* LPSTAT 50(32H) Check that the printer (or device) is ready
{not COS 3.0)

A <= =1 if ready

A <= 0 if not ready
Z set if not ready

Cassette-Handling Instructions

* PUTBYT 3(03H) Output the byte in register A to tape
(not COS 4.0 and 4.2)

Tape <- A
* GETBYT 4(04H) Read byte from tape into register A

A <~ Tape
Carry set if control character entered at keyboard

* GETSYN 17(11H) Get synchronization character from tape
(not COS 4.0 and 4.2)

Wait until A = Tape
Carry set on abortion

SETCAS 40(28H) Set data transfer speed from register A
(not COS 4.0 and 4.2) -

A = Option
A <= 0ld option

CASCTL 63(3FH) Initialize the cassette system
(ROS versions only)

1 before GETBYT
2 before PUTBYT
0 after a read or write operation

=
[}

Quick Reference Guide

pisc FDC Instruction

The following 4 instructions (INIT, RDSEC, WRSED, WRCHK) use a 5-byte disc
parameter block pointed to by register IX:

FDS MDS

IX => DEFB UNIT (0-3) (0-3)
DEFB TRACK (0-77 (0-39)
DEFB SECTOR (1-26) (1-16)

DEFW ADDRESS
ADDRESS is the address of a 128-byte data buffer.
ERROR CODES returned in register A:

BIT MEANING

Disc not ready

Disc write-protected

Write fault

Record not found (addressing error)
CRC error (data problems)

Data error (hardware)

Data mismatch

- N WhH ;o N

* INIT 25(19H) Initialize disc unit

* RDSEC 26 (1AH) Read sector
* WRSEC 27(1BH) Write sector, no check
* WRCHK 28 (1CH) Write and check sector
BOOT 49(31H) Initiate loading of the disc operating system

Disc IDC Instructions

The instructions, RDSECP, WRSECP, WRCHKP, FORMAT and VERTRK use a 5-byte
disc parameter block pointed to by register IX:

FDS MDS
double quad
IX => DEFB UNIT 0-7 0-7 0-7
DEFB TRACK 0-77 0-39 0-79

Single Double Single Double + Quad
Density Density Density Density
DEFB SECTOR 1-26 1-26 1-16 1-9
DEFW ADDRESS

ADDRESS is the address of a 128, 256, or 512-byte data buffer,
depending on the size of the physical or logical sector.

Quick Reference Guide

The instructions, RDSECL, WRSECL, and WRCHKL use the same parameters except
for SECTOR:

FDS MDS
Single Double Single Double + quad
Density Density Density Density
DEFB SECTOR 1-26 1-52 1-16 1-36

The instructions INISYS, FLUSH and RDINFO use one control byte pointed to by
register IX:
For INISYS

IX => Control Byte

bits 0-2 = Drive number (0-7) for booting

bit 3 = Drive change
bits 4-7 = Number of retries (0-14)
For FLUSH
IX => Control byte
bits 0-2 = Disc drive (0-7)
bits 3 = All buffers (1) or only the buffers
on specified drive (0)
bits 4~7 = Ignored
For RDINFO
IX => Control byte
bit 0 = 0 if 5.25 inch
1 if 8 inch
bit 1 = 0 if single~density
1 if double-density
bit 2 = 0 if 48 tpi disc
1 if 96 tpi disc
bit 3 = 0 if 48 tpi drive
1 if 96 tpi drive
bits 4-7 = 0

Error codes are returned in register A:

With 2 = 0 Error while instruction or parameters in transit
Carry = 1
Bit Meaning

Not used
One or more parameters out of range
Command unknown to the IDC
Drive not ready

o
~N O,
>

With 4 =
Carry =
Bit

0

1

2

3

4

5

6

7

Quick Reference Guide

Disc error

Meaning

Refers to a previous sector when flushing a buffer

Verification error during write/check EMT
Not used, defined as O
CRC error

Seek error

Unknown disc error

Disc is write-protected
Drive not ready

Successful completion messages are returned in register A (with 2 = 1,
Carry = indeterminate):

° wWith INISYS, the number of retries before success is returned

. With RDSECP:

1

3
[] With RDINFO:

0=0
1
1=0
1
* INISYS 64(40H)
* RDSECP 65(41h)
* WRSECP 66(42H)
* WRCHKP 67(43H)
* RDSECL 68(44H)
* WRSECL 69(45H)
* WRCHKL 70(46H)
* FLUSH 71(47H)
* RDINFO 72(48H)
* FORMAT 73(49H)
* VERTRK 74(4AH)

128-byte sector
256-byte sector
512-byte sector

5.25-inch

8-inch

single density

double or guad density
Initialize disc system

Read physical sector

Write physical sector

Write and check physical sector
Read logical sector

Write logical sector

Write and check logical sector
Flush buffer

Read disc drive information

Format floppy disc track

Verify format of a disc track

Quick Reference Guide

Miscellaneous Instructions

ERROR =1(0FFH) Print ?Err?, return to firmware command level
CONTC 0(00H) Return to firmware command level
WAIT 16(10H) Wait B multiplied by 833 microseconds

B = interval time

UPDATE 18(12H) Copy MASK to PORTO
(COS versions only)

Update PORTO location from MASK location at OFF03H

GETHEX 19(13H) Get a hex number from keyboard into HL
HL <= Number
C <~ Number of hex digits
B <~ Terminating character

DEOUT 20(14H) Put register DE to (HL) as hex digits
HL => Start
HL <- (Last character + 1)

BYTEO 21(15H) Put register A to (HL) as hex digits

HL => Start
HL <- Last character +1

CHAN 24(18H) Execute the EMT given in register C
C <= EMT code
Other registers should be set according to the
chosen EMT.
SAVE 35(23H) Save registers HL, DE and BC
Push HL, DE, BC
SAVEA 36(24H) Save registers A, HL, DE and BC
Push HL, DE, BC, AF
FSTLST 37(25H) Input first and last 16-bit numbers
DE <~ First

BC <~ Last
HL <- (Last - First)

Quick Reference Guide

GETJP 38(26H) Return Ath entry from table at (HL)
A = table entry number
HL => Table
HL <= (HL+A+A)
BASE 39(27H) Return workspace address in register DE
DE <~ Firmware RAM workspace

VERSN 51(33H) Return version number of the firmware

A <~ COS version * 10
A <~ (ROS version * 10) + 100

MOVBLK 61(3DH) Move copy of a block of memory
(ROS 1.0 only)

IX = Number of bytes to be moved
C => Block to be
DE => copied
B <= Area to
HL <= dump at
RAMMAP 62(3EH) Find amount of available memory
(ROS versions only)

In ROS 1.0

B= 0
A <- Number of 16K blocks available

In ROS 1.1, 1.2 and 2.2

As above plus

B =1
HL <~ bit map of available blocks.

A.11

Appendix B

APPENDIX B

DISC FORMATS

This appendix gives logical formats for each type of disc. In the first
section, the IDC logical mapping is shown, and special features are
described. In the second section, CP/M logical mapping is shown.

IDC LOGICAL MAPPING

5.25=-Inch Single-Density Discs

Here, the logical mapping is exactly the same as the physical format:

8-Inch Single-Density Discs

Again the logical mapping is the same as the physical format:

Appendix B

5.25-Inch Double and Quad Density Discs

Here, there are 4 logical sectors
for each physical sector:

Physical sectors ——> “III:III“

An entire track can be read in 5 revolutions of the disc, assuming that
logical sectors are accessed sequentially, as shown below:

Physical Logical
sectors sectors
Rev 1 Rev 2 Rev 3 Rev 4 Rev 5
1 1,2,3,4 —
2 9,10,11,12
3 17,18,19,20
4 25,26,27,28 -
5 33,34,35,36
6 5,6,7,8 -
7 13,14,15,16
8 21,22,23,24
9 29,30,31,32 -

On the first revolution, logical sectors 1 to 4 and 5 to 8 are read from
physical sectors 1 and 6, respectively. The physical sector reading order v
is 1, 6, 2, 7, 3, 8, 4, 9, 5.

Appendix B

8~Inch Double-Density Discs

There are 2 logical sectors for each physical sector. Also shown is a
"skew" between adjacent tracks. Tracks are skewed by 4 physical sectors:

An entire track can be read in 3 revolutions of the disc, assuming that
logical sectors are accessed sequentially, as shown below:

Physical Logical
sectors sectors
Rev 1 Rev 2 Rev 3

1 & 2 1,2,3,4

3 &4 37,38,39,40
5 &6 21,22,23,24,

7 &8 5,6,7,8

9 & 10 41,42,43,44
11 & 12 25,26,27,28

13 & 14 9,10,11,12

15 & 16 45,46,47,48
17 & 18 29,30,31,32

19 & 20 13,14,15,16
21 & 22 49,50,51,52
23 & 24 33,34,35,36
25 & 26 17,18,19,20

Appendix B

CP/M LOGICAL FORMATS

As well as the above formats, CP/M imposes its own logical mapping. The
layout of this is given below for each type of disc.

5.25~Inch Single-Density Discs

There are 4 logical sectors for each physical sector. The physical sectors
are read in the order:

1, 4, 7, 10,
13, 16, 3, 6,
9, 12, 15, 2,
5, 8, 11, 14

CP/M reserves tracks 0 to 2 for a binary copy of the CP/M system. Track 3
contains the directory and tracks 4 to 39 are data tracks.

Space for files is allocated in 8-sector (1Kbyte) units that are numbered
from 0 at the start of track 3.

8-Inch Single-Density Discs

There are 4 logical sectors for each physical sector. The physical sectors
are read in the order:

1, 4, 13, 19,
25, 5, 11, 17,
23, 3, 9, 15,
21, 2, 8, 14,
20, 26, 6, 12,
18, 24, 4, 10,
16, 22

CP/M reserves tracks 0 and 1 for a binary copy of the CP/M system. Track 2
contains 16 sectors of directory followed by 10 data sectors. Tracks 3 to

76 are data tracks.

Space for files is allocated in 8-sector (1Kbyte) units that are numbered
from 0 at the start of track 2.

5.25-Inch Double and Quad-Density Discs

CP/M reserves tracks 0 to 2 for a binary copy of the CP/M system. Track 3
contains 16 logical sectors of directory followed by 20 data sectors.
Tracks 4 to 39 are data tracks.

Note that track 0 is in single-density format; all other tracks are in
double-density format.

Appendix B

Space for files is allocated in 8 logical-sector (1Kbyte) units that are
numbered from 0.

8-Inch Double-Density Discs

CP/M reserves tracks 0 to 1 for a binary copy of the CP/M system. Track 2
contains 32 directory sectors followed by 20 data sectors. Tracks 3 to 76
are data tracks.

Note that track 0 is in single-density format; all other tracks are in
double-density format.

Space for files is allocated in 16 logical-sector (2 Kbyte) units that are
numbered from 0.

Appendix C

APPENDIX C

I/0 PORTS

3802 I/0 PORTS

Figure C.1 shows the 3802 I/O ports.

Single - densi Double - densi
Fg‘gboard. 10C board
— FF FDS MDS
}Rmrvd. EFq -CF EF
L FO } cTC } Port |
Ec cC - EC =
_eo }825: } Reset
}Ra.semd. E8 c8 L E8 -
L. DO }Porto } S10 ports
E4 C4 - E4
_co }FD I } cTc
/co L £0
T Vo Jpe— ’
™ A% =1 /o Ports in this area must be fully decoded to allow
. 90 i future use of greater than 256 ports. Existing
‘g:\rd.s are notgf decoded will appear at
__ 80 —f every 256 port ” locations.
S fo JE—
Full 4F
decoding { |- 6© ae 1l cre
Advised || oo } Reserved. ———-:g
48 N
49 }510-6
30—l a8
L 20 —
e | O et
1 Pod!

Note: PIO boards occupy 16 consecutive I/0 ports.
PIO + IEEE board occupies 32 consecutive I/0 ports.

Users are advised to fill I/0 ports from the bottom avoiding 40 to
S5F if possible.

Figure C.1 380Z I/0 Ports

o

Appendix C

etails of the IDC

§3 o
EO
E1
E2
E3
E4
E5
E6
E7
E8
E8
E9
EA
EB
EC
ED
EE
EF

T

S5 s ee e ae e se e se s es es ee ae

CTC
CTC
CTC
CTC

25\ S10-

SIO
SIO
SIO

IDc
IDc
IDC
Inc
Ibc
Inc
IDc
IDC

channel 0 (Channel B Rx/Tx)
channel 1 (Channel A Tx)

channel 2 (Channel A Rx)
channel 3 (Completion Interrupt)
channel—&' data

channel 'A' control
channel 'B' data
channel 'B' control

interface status (Port 2)

reset

reset

reset

reset

interface data/commands
interface data/commands
interface data/commands
interface data/commands

C.2

(Port
(Port
(Port
(Port

1)
1)

1)

board ports (COS 4.2 only) are given below:

read/write
read/write
read/write
read/write
read/write
read/write
read/write
read/write
read only

write only
write only
write only
write only
read/write
read/write
read/write
read/write

it [

4802 I/0 PORTS

I/0 Ports for the 480Z are listed below:

Appendix C

Port Function Options
Address needed
0-17H VDU
Port 0 corresponds to top line of screen
Port 17H corresponds to bottom line of screen

18H Control / Status Port 0
19H Control / Status Port 1
1AH Control / Status Port 2
1BH Control / Status Port 3 (DAC) e
1DH Control / Status Port 5 (USERIO Port)
20H Main Board CTC channel 0 - SIO-4 and cassette input
21H Main Board CTC channel 1 - Cassette I/O and SIO-2
22H Main Board CTC channel 2 - Keyboard interrupts
23H Main Board CTC Channel 3 - 50Hz interrupts

(for repeat key)
24H SI1I0 channel A (Network) data port
25H S10 channel B (SIO-4) data port
26H SIO channel A (Network) control / status port
27H SI0 channel B (SIO-4) control / status port
28H Maths chip Data port ab
29H Maths chip Control / Status port ab
2RH (Maths chip data port) ab
2BH (Maths chip Control / Status port) ab
2CH Option Board CTC channel 0 - IEEE interrupts acd
2DH Option Board CTC channel 1 - Maths chip interrupts abd
2EH Option Board CTC channel 2 - Real Time Clock ad
2FH Option Board CTC channel 3 - Real Time Clock ad
30H IEEE 0 Interrupt Status 0 Interrupt Mask 0 ac
31H IEEE 1 Interrupt Status 1 Interrupt Mask 1 ac
32H IEEE 2 Address Status
33H IEEE 3 Bus Status Auxiliary Command ac
34H IEEE 4 Address register ac
35H IEEE 5 Serial Poll register ac
36H IEEE 6 Command Pass Thru Parallel Poll register ac
374 IEEE 7 Data Input Data Output ac
38H HRGPORT 0 Dil Switch Y Address Look-up data a
39H HRGPORT 1 X Address a
3AH HRGPORT 2 HRG Status Control Look-up address a
3BH HRGPORT 3 Data Input Data Output a

Appendix C

Options

a) Option board
b) Maths chip
c) 1IEEE chip

d) CTC chip

e) DAC

Further information can be found in the 4802 Information File.

INDEX

INDEX

Where there is more than one entry, the first is the most significant.

<CTRL/@> 3.17
<CTRL/A> 2.1,
<CTRL/C> 5.4
<CTRL/F> 5.3,
<CTRL/R> 3.17
<CTRL/SHIFT/8> 7.5
<CTRL/SHIFT/9> 7.5
<CTRL/T> 3.17

<CTRL/Z> 7.4

5.3

10.1

3.17
3.17,
2.3

2.3

Alter sound of beeper
Alternate characters
ASCII mnemonic names
ASCII-coded characters
Attributes 3.16, 2.6
Automatic dimming 3.17
Autopaging 2.1, 3.4, 5.2
Available memory 9.11

2.6

BASE 9.9
Baud rate 7.2
Beeper 3.17
binary to hex. conversion
Bit numbering convention
Blanking period 4.2
BOOT 8.11
Buffer
- Disc 8.3
- Keyboard
BYTEO 9.5

9.5
1.9

6.1

CALR 14.2
CASCTL 7.5
Cassette handling 7.1
- Data transfer rate
- Initialization 7.5
CHAN 9.5
Changing character mode
Character
- Alternate
- ASCII-coded
- Attributes 3.16,
- Dimming 3.15
- Redefinition
- Width 2.1
CHGEN 4.8
CHREAD 4.9

7.2

3.5

3.16,
2.3

2.6
2.6, 4.3

3.15, 2.6

CLEAR
Clear
Clear
CLOSE 4.6
Close screen memory
Commands
- Firmware
- Front Panel
CONTC 9.3
Control characters
- CTRL/D
- CTRL/G
- CTRL/H
- CTRL/I
- CTRL/J
- CTRL/K
- CTRL/L
- CTRL/M
- CTRL/N
- CTRL/O
=~ CTRL/Q
- CTRL/R
- CTRL/S
- CTRL/T
- CTRL/U
- CTRL/V
- CTRL/W
- CTRL/X
- CTRL/Y
-~ CTRL/[
- CTRL/]

4.6
an area of screen 4.5
the top 20 screen lines

4.6

1.4
10.3

3.8, 2.3
(resume ocutput) 3
(sound the beeper)
(cursor left) 3.9
(horizontal tab)
(cursor down) 3.9
(cursor up) 3.9
(clear screen) 3.
(car.ret. + l.fd.)
(carriage return)
(suppress output)
(stop autopaging)
(reverse-video on)
(start autopaging)
(reverse~video off)
(blink on) 3.10
(cursor addressing)
(blink off) 3.11
(cursor right) 3.

(start escape seq.)
(cursor home)
- CTRL/” (clear to sc. end)
- CTRL/_ (c. home + cl. sc.)
- DELT (backspace + delete)
Control parameter 3.14
Conventions used in manual
Convert binary value to hex.
Copy MASK to PORTO 9.3
CP/M disc formats B.4
CURPOS 3.4
Cursor

- Address

- Control

-~ Movement

- Positioning

3.4

2.2

3.9
3.11

(delete to line end)

.9
3.9

3.9

10
3.10
3.10
3.10
3.10
3.10
3.10
3.10

3.1

11

3.12

3.12
3.12

3.12
1.9
9.4

INDEX

Data transfer rate (cassette)

DDT 10. 1
Debugging 10.1
Definable EMTs 6

.4

Define scrolling window

Define use of function keys

DEOUT 9.4

Device handlers

Dim attribute 3.

Dimming characters
- Automatic dimmi

Disabled interrupt
Disc

- Data space 8.
- Double-density
- Formats B.1,
- Formatting 8.
- Handling 8.1
= Initialization
- Initialization
- Logical sector
- Physical sector
-~ Single-density

- Testing for free buffer

- Track 8.9

- Verify format of a track

Dot pattern 4.8

Double-density discs

EMTs

- CHGEN 4.
= CHREAD 4.
- CLEAR 4.6
- CLOSE 4.6
= CONTC 9.3
- CURPOS
- Definable EMTs
- Definition of

- DEOUT 9.4

= ERROR 9.2

- FLUSH 8.16
- FORMAT 8.17
- FSTLST 9.7
- GETBYT 7.3
- GETHEX 9.4
- GETJP 9.8

- GETSYN 7.4
- GRAFIX 3.4

13.3

16
3.16

ng

2

8.3
8.17
17

(system)
(unit)
8.3
8.3
8.2

8.3

6.4
1.5

3.17
Direct access to screen nmemory
s 9.10

8.12
8.8

8.5

8.8

7.2

3.6, 3.19
3.14

11.1

EMT's (continued)

- IN1 6.4

- IN2 6.4

- IN3 6.5

- INF 4.8

- INISYS 8.12
~ INIT 8.8

- KBDC 5.4

- KBDIN 5.4

- KBDTC 5.5

- KBDTF 5.5

- KBDTL 5.2

- KBDW 5.3

- KBDWF 5.3

- LPOUT 6.3

- LPSTAT 6.8
= Mechanism 13.1,
- MOVBLK 9.10
- MSG 3.3

- OPNWT 4.6

- OUT1 6.4

- ouT2 6.4

- OUTC 3.2

- OUTCNV 3.3
- OUTF 4.8

- QUTNC 3.4

- PUTBYT 7.3
-~ RAMMAP 9.11
= RDINFO 8.16
- RDSEC 8.9

~ RDSECL 8.15
- RDSECP 8.13
- S4KIN 6.8

- S4KTL 6.7

- SAVE 2.6

- SAVEA 9.7

= Screen maintenance
- SCROLL 3.5
- SETCAS 7.5
~ SETLST 6.5
~ UPDATE 9.3
- VERSN 9.9

= VERTRK 8.19

- VTCLR 4.4

- VTIN 4.4
= VTLINE 4.5
- VTOUT 4.3
- WAIT 9.3

- WIDTH 3.5
= WINDOW 3.6
= WRCHK 8.

- WRCHKL 8.16
= WRCHKP 8.15
- WRSEC 8.10

1.5

3.1

EMT's (continued)
~ WRSECL 8.16
- WRSECP 8.14

ERROR 9.2

Error
- Codes (IDC)
- Messages

ESC 3.12

Escape sequences 3.13
- Character attributes 3.16
- Control parameter 3.14
- Define use of function keys
- Redefine graphics chars.

- Screen control 3.16

- Send graphics ch. to screen
- Sequence introducer 3.13
- Switch 3.13

8.19
6.6, 9.7

3.14
3.15

3.14

FDC board systems 8.2
FILEX utility 7.2
Filters 13.7

Find available memory amount
Firmware

- Commands 1.4

- Version identification 1.3
FLUSH 8.16
Flush buffer
FORMAT 8.17
Format disc track
Frame blanking
Front Panel

- Display 10.2

- Entry 3.16

- I/0 port commands

- Jumps and steps 10.14

- Latest commands 10.23

- Modify memory or register

- Moving the pointer 10.5

- Outside world commands

9.1

8.16
8.17

4.1, 11.2
10.1

10.12

10.8

10.20

- Prompt (!) 10.2

- Search and calculate 10.17
Front Panel commands 10.4
- <"> 10.24

- <,> 10.12

- L=> 10.6

- <e> 10.7

- </> 10.7

- L3> 10.13

- &> 10.13

- <>> 10.13

- <@> 10.18

- <CTRL/B> 10.21

- <CTRL/C> 10.21

- <CTRL/L> 10.6

INDEX

Front Panel commands (continued)

- <CTRL/O> 10.7
- <ESC> 10.22

- <G> 10.19

- <H> 10.19

- <I> 10.9

- <I> 10.15

- <K> 10.15, 5.5
- <L> 10.24

- <LINE FEED> 10.6
- <M> 10.9

- <N> 10.20

- <0> 10.22

- <P> 10.9

- <Q> 10.25

- <R> 10.10

- <RETURN> 10.6
- <S> 10.10

- <T> 10.25

- <u> 10.11

- <v> 10.11

- <W> 10.23

- <X> 10.11

- <Y> 10.16

- <z> 10.16

- <> 10.24

FSTLST 9.7
Full screen scroll 3.5
Function keys 3.14

Generate a new char. pattern
Get a hex. no. from keyboard
GETBYT 7.3
GETHEX 9.4
GETJP 9.8
GETSYN 7.4
GRAFIX 3.4
Graphics
- Special characters
- Teletext 2.4

4.8
9.4

2.5, 3.14

Hardware clock 9.3

I1/0 ports

- 3802 c.1, 4.1, 10.3

- 4802 C.3, 10.3, 11.4

- Memory-mapped (3802) 12.4
IDC board systems 8.2
IDC error codes 8.19
Implementation tables 1.10
IN1 6.4
IN2 6.4
IN3 6.5
INF 4.8

INDEX

INISYS 8.12

INIT 8.8

Initialize

- Cassette system 7.5

- Disc system 8.12

- Disc unit 8.8

Initiate cold bootstrap 8.11
Input 6.1

= 16-bit numbers 9.7

= From disc 8.3

- From tape 7.3
Input/output ports Col, 4.1
Inter-record gap 7.4
Interfaces 6.5

Interrupt routines 12.8
Interrupt-driven keyboard 5.1

KBDC 5.4
KBDIN 5.4
KBDPRE location 13.7
KBDTC 5.5
KBDTF 5.5
KBDTL 5.2
KBDW 5.3
KBDWF 5.3

Keyboard 5.1
Keyboard-entered characters 5.1, 1.9

Layers of operation 1.1

Line blanking 4.1, 11.2
Logical operations 8.5

Logical sector 8.3

Long-range relative calls 14.4
Loudspeaker 3.17

LPOUT 6.3

LPSTAT 6.8

Mapping PROM 12.8
MASK 9.3
Memory
- Available 9.11, 10.3
- Base of workspace area 13.3
= Common RAM 13.7
- COS + ROS workspace (RAM) 12.5
- COS firmware (ROM) area 12.3
- COS 1/0 ports area 12.4
- COS video RAM + HRG area 12.3
- Filters 13.7
- KBDPRE location 13.7
- Layout 12.1
- Locations 12.1
- Offset address 13.3
- Page number 10.2
- Pages 12.8

Memory (continued)
~ Reserved 12.3
- ROS firmware (ROM) area 12.5
~ ROS system RAM area 12.5
- Screen 11.1, 4.1
- Size 12.1
- System tables area 12.6
-~ TRAPX vector 13.5
- Usable 12.1
- Workspace 12.6
Memory-mapped ports (380%) 12.4
Monitor circuitry 4.1
MOVBLK 9.10
Move copy of memory 9.10
MSG 3.3

Offset address 13.3
Open screen for memory access 4.5
OPNWT 4.6
ouT1 6
ouT2 6.
ouTc 3
OUTCNV
OUTF .
OUTNC 3.4
Output 6.1

- Byte to interface 6.3

- Character to screen 3.2

= Line to screen 4.5

- Message to screen 3.3

- To disc 8.3

- To tape 7.3

.

-

-3

W WN & B

'Y

Page number 10.2

Parallel interfaces 6.1

Phase inversion 7.1

Physical sector 8.3

PORTO 12.4, 9.3, 11.1

PORT 1 12.4, 11.1

Ports
- I/0 (3802) C.1, 4.1, 10.3
- I/0 (4802) C.3, 10.3, 11.4
- Memory-mapped (3802Z) 12.4
- User I/O 6.1
Position-independent code 14.1
Positioning the cursor 2.2
Printer 6.5
-~ Check that it is ready 6.8
- Setting up 6.5

Printer + interface handling 6.1
PUTBYT 7.3

RAMMAP 9.11
RDINFO 8.16

RDSEC
RDSECL
RDSECP
Read

8.9
8.15
8.13

- Current char. pattern

- Disc drive information

- From tape 7.3
- Logical sector
- Physical sector

8.15
8.9,
Redefine graphics characters

4.9
8.16

8.13

3.15

Register-indirect instruction

Relative jump
Relocatable code

14.1

S4KIN 6.8
S4KTL 6.7
SAVE 9.6
Save registers
SAVEA 9.7
SCASS utility
Screen

- Character mode

- Clearing an area

9.6
7.2

2.1

- Contrel 3.16
- Frame blanking
- Handling 2.1
Line blanking 4.1,
- Memory access 4.1
- Sending a message

- Sending characters
Screen memory

- Close 4.6

- Direct access to

- Open 4.5
SCROLL 3.5
Scrolling window 2.1
- Define 3.6, 3.17
Sector 8.3
- Parameters

4.1

.

-

)

8.5

Sending a character to screen 3.1, 3.1
Sequence introducer 3.13

Sequential data access
Serial interfaces 6.1
Set printer 6.5
SETCAS 7.5

SETLST 6.5

]

Sign-on message 8.1
Single-density discs
SIO interfaces 6.6

) —

B

[

14.1
Reverse-video attribute

3.16

14.2

. 3.5, 3.16

4.5
- Clearing top 20 lines

3.4

, 1.2

11.2

3.3
3.1,

8.5

Setting data transfer rate

8.2

4.1

1.1, 4.1

7.2

INDEX

S10-4 interface 6.6

- Read into register A
- Test for character
Skew B.3
Smooth scrolling
Sound duration
Sound frequency
Speaker 3.17
Special graphics characters
Standard characters 2.3
Start—-up message
Static memory
Switch 3.13
Synchronization character 7.4
Synchronization, screen access

6.8
6.7
2.2,

3.17
3.17

3.16

2.5,

1.3
11.1

4.2

Teletext graphics characters
Testing for a free buffer
Text in HRG output 3.16
Track 8.9

Transfer vectors 13.2
Transferable software
TRAPX vector 13.5

2.4
8.5

1.7, 9.10

Underline attribute
UPDATE 9.3
User 1I/0 port

3.16
6.1

VDU 4.6

Verify format of a disc track
Version identity 1.3

VERSN 9.9
VERTRK 8.19
Video circuitry
VTCLR 4.4
VTIN 4.4
VTLINE 4.5
VTOUT 4.3

8.19

1.1

WAIT 3

WINDOW 3.6

Windows 2.2, 3.6,
Workspace 9.9,

WRCHK 8.11
WRCHKL 8.16

WRCHKP 8.15
Write logical sector
- Plus check 8.16

Write physical sector
- Plus check 8.11,
WRSEC 8.10

WRSECL 8.16

WRSECP 8.14

Z80 I/O instruction

9.

3.17
12.6

8.16

8.10,
8.15

8.14

11.4

3.14

USERS' COMMENTS
—_—— D

To help Research Machines produce the highest
quality microcomputers, supporting software
and technical publications, we like to hear
from users about their experiences with our
products.

Do share your thoughts with us by jotting
them down on the tear-off form on the next
page. You can leave out your personal
details, if you want to. Fold the form in
two, seal it with adhesive tape and put it in
the post. No stamp is needed if you post it
within the United Kingdom.

If you would like to give more information
than we have allowed room for on the form, we
will be very pleased to receive a letter from
you. You can even use the form to ask for a
post-paid envelope if you wish.

Additional information will be most useful.
If you give us as much detail as possible
about your hardware configuration, software
version number or manual title, then we can
relate your comments to the correct product.

i
¥
!
i

e

o

Postage
will be
paid by
licensee

Seal with self-adhesive tape (not staples) along this edge.

RESEA CH MACHINES

Fold along this line.

Do not affix Postage Stamps if posted in
Gt Britain, Channel Islands, N Ireland
or the Isle of Man

BUSINESS REPLY SERVICE
Licence No OF32.

TECHNICAL PUBLICATIONS DEPT
RESEARCH MACHINES LTD

PO BOX 75 OXFORD

OX2 0BR

USER’S COMMENT FORM PN 10971

User's comments help us to improve our products. If you would like to make any comments,
please use this reply-paid form

Your comments:

Research Machines may use this information in anyway believed tobe appropriate and without
obligation.

Although it is not essential, it would be helpful if you gave the following information:

Name. ...

Organization....................... ..

Address ..

...................................... Post Code
System: 380Z/ 480Z / Network M Cassette / 5.25" discs /8" discs

(Delete as necessary)

